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1. Abstract 

The genetic improvement of grain yield in bread wheat was targeted by this project. In collaboration 

with five wheat breeding companies, the high-density genotyping of a wheat multi-founder advanced 

generation inter-cross (MAGIC) population was exploited. This population captures high levels of 

genetic recombination and diversity. It was used to: 1. Identify the genetic regions in wheat 

controlling yield and stability. 2. Provide a molecular toolkit to track, within breeding programmes, 

regions of the wheat genome that confer increased yield/yield stability. 3. Provide the participating 

breeders with analysis pipelines and resources to carry out analysis of MAGIC datasets. 4. Exploit 

the structure of the MAGIC population to rapidly ‘Mendelise’ QTL for multiple yield/yield component 

traits, providing precise genetic and molecular resources for subsequent studies to fine-map to the 

gene/causative polymorphism level. 5. Use the molecular breeding methodology, genomic prediction 

(GP), to allow selection for yield/yield stability in MAGIC lines, based on molecular data alone. 

 

MAGIC lines (1109) were grown at five UK sites over two seasons. This delivered 4,996 2x6m plots 

on which 18 yield, yield component and agronomic traits were measured. This generated ~90,000 

phenotypic data points. Phenotypic information was combined with genotypic data for ~20,000 SNPs 

for genetic analysis. This identifed 376 QTL, with genetic intervals for most QTL <10 cM. A subset 

of 20 QTLs was prioritised for the development of ‘KASP’ genetic markers, based on QTL 

significance, allelic effect and stability across years and sites. This resulted in the design and 

validation of 58 co-dominant KASP markers for the 20 target QTL. We developed/initiated 31 near 

isogenic lines (NILs) for 17 traits, along with genetic markers with which to further exploit these 

materials. Additionally, we determined the gene content from the variety Chinese Spring and 

identified candidate genes. For one QTL, we identified a single candidate gene controlling spikelet 

number per ear on chromosome 7A. We searched for artificial mutants using wheat ‘TILLING’ 

populations for the tetraploid and hexaploid varieties Kronos and Cadenza, respectively. Highly 

deleterious mutations across multiple homoeologues in 23 candidate genes were identified. These 

TILLING resources will be used to help determine the specific genes and genetic variants underlying 

the QTLs identified. Finally, we used pre-project MAGIC phenotypic data for yield, in combination 

with phenotypic data collected in this project, to investigate GP for predicting phenotypic 

performance in a given generation, based on markers for plant height.  

 
MAGIC reliably delineates QTL to relatively precise genetic and physical intervals. Tightly linked co-

dominant genetic markers, that tag yield and yield component QTL, have been delivered to our 

industry partners for potential use in their breeding programmes. The work allowed candidate genes 

within QTL to be identified, and extensive biological (NILs, TILLING lines) and molecular (KASP 

markers) materials to be generated with which to further investigate phenotypic effects of QTL and 

genes in isolation.  
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2. Introduction 

To date, bi-parental populations have been the norm for detecting quantitative trait loci (QTL) in 

wheat, and these commonly use low numbers of progeny (typically 100-200). This approach often 

suffers from a lack of statistical power and precision, due to the limited genetic variation and 

recombination captured. Previously, low molecular marker densities have historically meant that 

such problems were commonly overlooked. Such limitations have contributed to a lack of translation 

into breeding programmes. It has been estimated that globally, 10,000 QTL have been published 

(Bernado, 2008), of which the vast majority have never been employed in marker-assisted breeding. 

We believe there are several reasons for this: 
 

(1) A focus on traits which are of minor breeder interest. Here, we focus on yield and yield stability, 

core breeding targets as supported by the participation of six industrial partners.  

(2) Mapping in populations created by crossing extremes for the target traits. It is easy to map QTL 

in a cross between the best and worst lines available, but of more immediate relevance in breeding 

is tagging QTL in crosses among the best lines. The use of breeder-selected founder lines in our 

MAGIC population has created a resource which is diverse and highly recombined, yet of immediate 

relevance.  

(3) Lack of precision. Bi-parental populations, deployed using population sizes >200 as is the 

common case, are relatively imprecise in their ability to locate QTL. Following large chromosomal 

tracts in breeding programmes to tag a single QTL is not good practice. The association between 

the flanking markers and QTL is very readily lost through recombination and large tracts are also 

more likely to contain alleles at QTL for detrimental traits. MAGIC locates QTL with much higher 

precision, facilitating rapid uptake in breeding programmes. 

 

The recent development of high-density single nucleotide polymorphism (SNP) arrays has meant 

the availability of molecular markers is no longer the limiting factor for wheat QTL studies. However, 

lack of similar improvements in mapping population design has meant that much of the potential for 

greater mapping resolution afforded by increased marker density has remained largely unrealised. 

BBSRC’s recent investment in developing the NIAB wheat MAGIC population constructed from eight 

elite wheat founders (‘NIAB Elite MAGIC’, Table 1) has helped bridge this gap, providing a biological 

resource ideally suited to leverage advances in wheat genomics.  
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Table 1. Parents of the UK Elite MAGIC population. RL = most recent appearance in AHDB 

Recommended List®. 

 

MAGIC: By combining controlled allelic inputs from multiple parents with high levels of recombination 

achieved over multiple rounds of inter-crossing, MAGIC populations overcome the specific 

drawbacks associated with traditional bi-parental mapping populations, as well as more recent 

Association Mapping approaches (Mackay & Powell, 2007; Cavanagh et al. 2007). The higher allelic 

diversity in MAGIC populations improves sampling of available genetic diversity and phenotypic 

variation, facilitating the analysis of interacting or complex traits within a single mapping population. 

Combined with the suitability for the generation of high-density genetic maps, these factors make 

MAGIC populations ideal platforms for high-resolution genetic dissection of QTL and as community-

based resources for crop improvement. The MAGIC approach is a translation to crops of methods 

employed in mouse genetics (Mott et al. 2000). The approach (and name) was advocated by NIAB 

in 2007 (Mackay & Powell, 2007; Cavanagh et al. 2007). It has caught on: Cavanagh et al. (2007) 

has been cited 292 times and Mackay & Powell (2007) 388 times. An Australian four-parent spring 

wheat MAGIC population has recently been developed, results from which are now emerging (e.g. 

Huang et al. 2012). However, our population remains the only MAGIC resource of direct relevance 

to UK winter wheat. The eight parental lines represent commercially available UK winter-sown 

varieties, selected for use in this population in consultation with UK wheat breeders (Table 1). The 

resulting highly recombined population of >1,000 progeny provides a high-resolution platform for the 

genetic dissection of trait inheritance. NIAB funding has provided 90k Illumina iSelect SNP array 

datasets for 643 of the >1,000 MAGIC lines (Figure 1a). Our analyses find the population to be well 

suited as a platform for fine-mapping QTL and gene isolation: patterns of linkage disequilibrium (LD) 

show the population to be highly recombined (Figure 1b; Mackay et al. 2014), while comparison with 

a north-western European association mapping panel of 480 varieties finds the MAGIC population 

captures ~80% of the available SNP variation (Gardner et al. 2016). To demonstrate the potential of 

the resource, we used these MAGIC datasets to investigate the genetic control of awning, finding a 

highly diagnostic marker for awn presence absence, which was converted to the flexible KASP 

genotyping system (Figure 2). An advantage of the NIAB Elite MAGIC population and associated 

SNP genotypic data, is the ability to exploit the residual heterozygosity present in the genotyped 

lines (predicted to be at ~2% of the genome) in order to develop near isogenic lines (NILs). These 
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germplasm resources can be rapidly developed by identifying MAGIC progeny that are heterozygous 

across the target QTL region. By growing and selfing such lines, progeny can be identified using 

genetic markers that are homozygous for each of the two allele classes (i.e. A:A individuals and B:B 

individuals). Such lines will differ at the QTL locus, but will be almost identical (~98% on average) 

throughout the rest of the genome. Such NIL resources, in which individual QTL have been rapidly 

Mendelised, represent key resources with which to undertake detailed analysis of the phenotypic 

effects of single QTL in isolation. The NIL pair can also be crossed together to generate large 

numbers of F2 progeny, allowing fine-mapping of Mendelised QTL via identification of genetic 

recombinations within the target genetic interval. 

                     

     
Figure 1. Elite MAGIC population properties. (a) Allele frequencies in MAGIC progeny genotyped 

with 90k SNP array. Peak increments are as expected from an 8-parent crossing scheme. (b) 

Analysis of genome-wide linkage disequilibrium (D’ above horizontal, R2 below). Figure 2. 
Diagnostic SNP for awning identified using 90k array, converted to the KASP genotyping platform. 
 

Yield: Grain yield is the most important trait in wheat, and is under complex genetic control. Yield 

can be largely partitioned into three major components: kernel weight/size and shape, kernel number 

per spike and spike number per unit area. These phenotypes can be further subdivided (e.g. grain 

size can be subdivided into grain length, width, depth, shape and density, and is thought to be 

predominantly determined by the genetic control of cell proliferation and expansion) and are 

influenced by other traits, such as accumulation and transport of photosynthetic products, flag leaf 

size, plant height, biomass and flowering time. Furthermore, wheat processing requirements mean 

traits that affect milling performance (e.g. grain shape, size, density and uniformity) are also critical 

for flour yield. Numerous studies investigating the genetics of yield (e.g. Rustgi et al. 2013), grain 

size (Gegas et al. 2010), flowering time (Griffiths et al. 2009a), height (Griffiths et al. 2009b), flag 

leaf size (Xue et al. 2013) and other yield components have been undertaken. However, many have 

either suffered from lack of QTL precision, are based on crosses between extremes of phenotype 

(i.e. not the best crossed with the best), or are not relevant to UK germplasm. Furthermore, these 

studies have been conducted within individual bi-parental populations, which restricts the genetic 

variation (and therefore, the number of yield-related traits) studied in any one cross. This limits the 

1a 1b                                          2
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scope for detection of QTL-by-QTL and QTL-by-environment interactions. The advent of high-

throughput image-based phenotypic data collection of yield components provides the opportunity to 

revolutionise their genetic dissection. However, the gains obtained by the deployment of such 

technology will always rely on the germplasm investigated. In this project, we combine high-

throughput phenotyping and high-density genotyping with germplasm resources ideally suited to 

realise the advances in these technologies. The combination of complementary resources used in 

this project provide the experimental power, precision and phenotypic depth to undertake precise 

genetic dissection of all target traits within a single platform, allowing analysis of the genetic and 

environmental interactions between multiple yield-related traits measured over six growing seasons. 
 

Objectives: This project exploits NIAB’s expertise in crop genetics and quantitative analysis, 

breeder expertise in growing and phenotyping wheat yield plots, and NIAB’s MAGIC wheat biological 

resource, to:  

 

1. Deliver genetic markers for the genetic improvement of yield, yield components and yield 

stability in wheat. 

2. Develop NILs for major yield and yield component QTLs, as well as the associated genetic 

markers with which to validate them. 

3. Provide genotypically and phenotypically characterised MAGIC germplasm for selection for 

lines for possible inclusion within breeding programmes. 

4. Develop a Genomic Prediction strategy for selection for yield and yield stability on markers 

alone. 
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3. Materials and methods 

3.1 NIAB Elite MAGIC germplasm 

The NIAB Elite MAGIC population has been previously reported by Mackay et al. (2014). Briefly, the 

eight wheat founder varieties (Table 1) were intercrossed over three generations, using a design 

based on a simple replicated funnel crossing scheme of the form {[(AxB) x (CxD)] x [(ExF) x (GxH)]}, 

where the matched brackets (), [] and {} delineate the four 2-way, two 4-way and one 8-way cross, 

respectively, and the letters denote the eight founders. All 28 possible 2-way crosses were performed 

(AxB, AxC, AxD etc). Similarly, all 210 possible 4-ways crosses between unrelated 2-way lines were 

performed. At the 8-way stage, only 210 of the possible 315 crosses were made, using each 4-way 

twice. The outputs of the 8-way cross, which possess contributions from all eight founders, are 

termed F1s. These F1s were selfed through multiple rounds of single seed descent (SSD) to 

generate a target population of 1,000 recombinant inbred lines (RILs). The only purposeful selection 

imposed on the population was removal of lines with extreme short stature, due to the presence of 

dwarfing alleles at both the REDUCED HEIGHT-B1 (RHT-B1) and RHT-D1 semi-dwarfing loci, which 

segregated in the population.     

3.2 90k SNP genotypic data  

Previously generated SNP genotypic data for 643 MAGIC lines and the 8 founders is as described 

by Mackay et al. (2014), and further quality controlled as described by Gardner et al. (2016). Briefly, 

DNA was extracted from a single F5 RIL individual per line using a modified Tanksley method (Fulton 

et al. 1995), and genotyped using the Illumina Infinium wheat 90k SNP array (Wang et al. 2014). 

Genotype calls were processed using Genome Studio v2011.1 (Illumina, San Diego, USA) and 

quality controlled following the pipeline outlined in Appendix S1 from Gardner et al. (2016). This 

generated 20,639 polymorphic SNPs, 18,601 of which were successfully anchored on the NIAB Elite 

MAGIC genetic map (Gardner et al. 2016).    

 

3.3 Field trials and phenotyping 
3.3.1 Trial design 

Autumn sown field trials using the NIAB Elite MAGIC population (1109 lines, 8 founders) and one 

commercial wheat control (cv. KWS Santiago) were undertaken over two wheat seasons (2014-2015 

and 2015-2016), with five sites per season (as listed in Table 2). For any one year, trials were 

designed so that approximately 80% (2015) or 65% (2016) of lines were grown in a single rep in 

each of two trials and 20% (2015) or 35% (2016) of lines were grown in 2 reps in one trial and one 

rep in another trial. Exact details per trial are shown in Table 2. Within each trial, trial design was 

undertaken using the “Design of experiments” website (“DEW”, now obsolete but replaced by the R 

package “blocksdesign”). All sites except LIM 2015 had a 3 tier, Main/sub-  
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Trial site – 
harvest year 

Location: 
lat, long 
(degrees) 

Date sown No. of 
plots (runs 
x rows) 

Trial 
design 
(b, s1, 
s2)† 

No. 
MAGIC 
RILs 

RIL 
replica
tion 
1:2 
reps 

Reps per 
founder; 
reps per 
Santiago 

BAY-YLD-15 N/A N/A 504 (8x63) 2,7,4 420 376:44 4;8 
BAY-YLD-16 N/A 18/10/2015 504 (14x36) 2,7,4 384 300:84 4;4 
ELS-YLD-15 52.82342,   

-0.12293 
17/10/2014 500 (10x50) 4,5,5 421 378:43 4;4 

ELS-YLD-16 52.83472, 
-0.10886 

19/10/2015 500 (10x50) 2,5,5 390 316:74 4;4 

KWS-YLD-15 52.12131, 
0.08278 

22/10/2015 504 (36x14) 2,7,4 421 374:47 4;5 

KWS-YLD-16 N/A N/A 504 (12x42) 2,6,6 393 318:75 4;4 
LIM-YLD-15 52.20274, 

0.85011 
24/10/2014 500 (25x20) 25 plots 422 380:42 4;4 

LIM-YLD-16 52.20402, 
0.88312 

13/10/2015 504 (12x42) 2,6,3 395 322:73 4;4 

RAG-YLD-15 52.14363,   
-0.16692 

22/10/2014 490 (14x35) 2,7,5 420 386:34 4;4 

RAG-YLD-16 N/A 14/10/2015 490 (14x35) 2,7,5 394 334:60 4;4 
 

Table 2. Details of field trials, including location, trial design and traits phenotyped. The Trial name 

is in the format XXX-YYY-ZZ where XXX = trial site (BAY = Bayer trials, ELS = Elsoms trials, KWS 

= KWS trials, LIM = Limagrain trials, RAG = RAGT trials), YYY indicated the trial type (YLD = yield 

trial) and ZZ = harvest year (15 = 2015, 16 = 2016). N/A = data not available. †b = blocks, s1 = sub-

block1, s2 = sub-block2. 

block1/sub-block2 design but with variation in the details based on individual site characteristics, 

with a range from 5-9 plots per lowest tier. For the 2015 and 2016 season trials, F8 and F9 NIAB 

Elite MAGIC seed was sourced from nursery plots grown at NIAB-Cambridge in the preceding 

season of each trial, respectively. All trials were run using standard agronomic packages (fertilisers, 

pesticides and growth regulators) for the locations in which they were grown.  

 

3.3.2 Phenotyping 
Trials were phenotyped for a suite of 18 traits. These are divided into two categories: pre-harvest (8 

traits) and post-harvest (10 traits), and are listed along with a summary of their scoring 

methodologies, in Table 3. All post-harvest traits were measured using a Marvin Grain Analyser 

(GTA Sensorik GmbH, Germany) and an associated balance. MARVIN analysis was undertaken as 

detailed in Box1. 
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Trait 
abbreviation 

Trait description 

AWN Awn presence/absence 

GS55 Growth stage 55 (days from 1st May), half of ear emerged above flag leaf 

LOD† Lodging (% of plants leaning >45°) 

PHT Plant height (cm), at maturity, excluding awns/scurs 

SKT Spikelet number, mean of 10 ears 

SPW Specific weight (g), off combine 

TILL Tiller number, average of 3 30x30cm quadrats 

YLD Grain yield (t/ha), calculated from harvest fresh-weight and moisture % 

ARE Area of seed (mm2), mean of seed from 30 ears 

CIR Circumference of seed (arbitrary units), mean of seed from 30 ears 

FFD Factor form density (arbitrary unity), TGW/ARE, mean of seed from 30 ears 

LEN Length of seed (cm), mean of seed from 30 ears 

LWR Seed length to width ratio, mean of seed from 30 ears 

PSH Percentage of shrivelled seeds (%), mean of seed from 30 ears 

SNO Seed number, mean of seed from 30 ears 

TGW Thousand grain weight (g), calculated using seed from 30 ears 

VWT Volume weight (g), weight of 25 ml seeds from 30 ears 

WID Seed width (mm), mean of seed from 30 ears  

 
Table 3. Traits abbreviations and descriptions. Pre-harvest (top) and post-harvest (bottom) In some 

trials, the lodging trait was further subdivided into lodging (% of plants leaning >45°), leaning (LEA, 

(% of plants leaning <45°) and lodging+leaning (LLE, (% of plants leaning >45° + leaning <45°). 
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Box1. MARVIN analysis protocol. 

 

Threshed and cleaned grain from 30 ears per plot were used for MARVIN analysis. For each plot, 

grain samples were analysed by MARVIN in two batches. 2015 season analysis was undertaken 

using MARVIN software version 4.0. For the 2016 season analysis, version 5.0 was used, which 

differs in that data output is provided for each individual grain, rather than a mean value for the 

imaged sample.  

 

A. 2015 season 

MARVIN data collection was undertaken by following the standard parameters for wheat.  

 

B. 2016 season 

To control for any potential temporal drift in MARVIN data for ARE, LEN, WID and LWR over the 

timescale of data collection, revision of the MARVIN protocol for the 2016 season grain included the 

use of two controls, phenotyped at approximately 2 hr intervals (every 20 samples) throughout each 

day of analysing: (1) clay seeds, and (2) real seeds. 

 

Two types of output were generated from MARVIN: (a) summary output data for all seeds in a 

sample, and (b) data for individual seeds within a sample. Sample summary data was used for initial 

QC, highlighting obvious outliers for MARVIN re-analysis. Subsequently, deviation of MAGIC sample 

data from the reference sample data phenotyped on the same day was calculated, by fitting a 

smoothing spline to the data in using a custom R script (NIAB reference: Control_splines_script.R). 

The finalised summary table and the individual seed data table were then uploaded to R and 

processed using a custom script (NIAB reference: Marvin_Processing_script.R). Critical steps are 

described below.  

 
2. Seed classification  

Using the individual seed data from (1) above, individual grains were classified into eight classes: 

DOUBLES = 2 touching grains imaged as a single grain 

MULTIS = more than 2 grains imaged as a single grain   

JUNK = chaff, awns, dust, small fragments not automatically removed by Marvin protocol 

CHAFF_ATTACHED = grain with chaff attached 

BROKEN = broken grain 

SHRIVELLED = shrivelled grain 

ANGLED_SEEDS = grains not sitting flat on scanner bed 

NORMAL_SEEDS = all other imaged grains 
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Imaged seeds were allocated to these classes based on the thresholds and ordered process listed 

below: 

Seed number >1 = MULTIS 

Length <3.6mm = JUNK 

Width <1.5mm = JUNK 

L/w >3.4 = JUNK 

Area <7.9mm-2 = JUNK 

Width >5.1mm = DOUBLES 

Length >8.6mm AND area >30mm =DOUBLES 

Length >8.6mm AND area <12mm-2 = JUNK 

Length >8.6mm AND 12<area>30mm-2 = CHAFF_ATTACHED 

L/W <1.4 = BROKEN 

L/W <1.5 AND Length <5.1mm = BROKEN 

CIR ≥2 AND area <12mm-2 = JUNK 

Area >31mm-2 = DOUBLES 

Width <2.8mm = SHRIVELLED 

L/W >2.3 = SHRIVELLED 

Width >4.7mm = ANGLED_SEEDS 

Remainder = NORMAL_SEEDS 

 

3. Downstream Analysis  

Traits included in downstream analysis fall into four categories 

Group 1. Seed size/shape traits: LEN (average length), WID (average width), ARE (average area), 

LWR (average length/width), CIR (average CIR). 

Group 2. Seed number (SNO) based on all seeds including shrivelled, thousand grain weight (TGW) 

based on all seeds including shrivelled, factor form density (FFD) based on all seeds including 

shrivelled. 

Group 3. SNO based on TGW with non-shrivelled seed only, FFD based on non-shrivelled seed 

only. 

Group 4. Percent shrivelled seed (PSH). 

 
These categories were used in downstream analysis as follows: MULTIS – remove measures from 

Group 1 Traits, but use actual seed number in Group 2 and Group 3 traits, assuming MULTIS are 

non-shrivelled. DOUBLES – treat as MULTIS after correcting seed number to two. JUNK – remove 

from all trait categories. SHRIVELLED – remove from Group 1 traits, include in Group 2 traits, 

remove from seed number in Group 3 traits TGW and FFD. Use for Gp4 estimation. 

CHAFF_ATTACHED – remove from Group 1 traits, use actual seed number in Group 2 and Group 

3 traits. BROKEN – omit from Group 1. For Group 2 and Group 3, use following calculation: Number 
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of broken seeds = sum of area of broken seeds/average seed area of normal seed. 

ANGLED_SEEDS – drop from Group1 analysis, keep in Group 2, Group3 and Group 4 (as non-

shrivelled). NORMAL – use in all analyses. These analyses result in the final list of MARVIN traits 

shown in Table 3:  

 

Size traits.  

ARE_NOR_MEAN  Average area of normal seeds 

ARE_NORSHR_MEAN Average area of normal plus shrivelled seed 

LEN_NOR_MEAN  Average length of normal seeds 

LEN_NORSHR_MEAN Average length of normal plus shrivelled seed 

WID_NOR_MEAN  Average width of normal seeds 

WID_NORSHR_MEAN Average width of normal plus shrivelled seed 

LWR_NOR_MEAN  Average length-width ratio of normal seeds 

LWR_NORSHR_MEAN Average length-width ratio of normal plus shrivelled seed 

CIR_NOR_MEAN  Average circularity of normal seeds 

CIR_NORSHR_MEAN Average CIRTY circularity of normal plus shrivelled seed 

 

Seed Number Traits  

SNO_NOR   Number of seeds in all categories EXCEPT shrivelled 

SNO_TOT   Total seed number including shrivelled 

PSH    Percentage Shrivelled Seed 

 

Weight traits 

TGW_NOR  Thousand grain weight of all non-shrivelled seed 

TGW_TOT  Thousand grain weight of all seed  

VWT1  Weight of 25ml seeds averaged over all sub-samples weighed 

VWT2  Weight of 25ml seeds averaged over first 2 sub-samples weighed 

 

Derived traits 

FFD_NOR   TGW_NOR/ARE_NOR 

FFD_TOT   TGW_TOT/ARE_NOR_SHR 
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3.4 Statistical analyses 

3.4.1 Trials analysis 
All data was subject to rigorous quality control, including judicial removal of outliers where the weight 

of evidence suggested they were erroneous. All trials were analysed using linear mixed models in 

Genstat 18.0 (VSN International) and spatial autocorrelation and blocking models were thoroughly 

explored, including all blocking components, different spatial models and relevant covariates. Model 

selection was "informed AIC", i.e. based on Akaike information content (AIC) but if two models 

differed very slightly in AIC, the more biologically informative model was chosen, even if it had a 

fractionally larger AIC. In a few cases of unstable AIC values between similar models, the parameter 

causing the instability was dropped, even if the models including this parameter apparently had a 

lower AIC. Variograms and residual analysis were used in some cases to reject poor models.  

 
3.4.2 Genetic analyses 
MAGIC genetic analyses were undertaken using two approaches.  

• Single marker analysis base on identity by descent (IBS): a simple linear model test in R/lme4 

using all 20,643 SNPs. After identification of a major QTL, the analysis was repeated with the 

major QTL as a covariate.  

• Haplotype analysis using a subset of 7,369 uniquely mapped SNPs from the MAGIC genetic 

map (Gardner et al. 2016).  

The haplotype approaches are more likely to (a) detect QTL and (b) accurately locate QTL. However, 

in poorly mapped areas of the genome (e.g. around introgressions) these approaches will fail. In 

these cases, if markers in these regions are synchronised with the QTL, the IBS approach will be 

the only one able to detect QTL.  

Founder haplotype probabilities were computed with the “mpprob” function in R/mpMap (Huang & 

George, 2011), implemented in R/qtl (Broman et al. 2003). QTL analysis with haplotypes was carried 

out (a) via linear mixed model using all mapped markers, called identity by descent (IBD), (b) by 

simple interval mapping (IM) using the mpIM function in R/mpMap and (c) by composite interval 

mapping (CIM) using the mpIM function in R/mpMap with either 5 or 10 covariates. A full QTL model 

was then fitted with all QTL using R/fit.mpQTL.  

The MAGIC genetic map of Gardner et al. (2016) was used for QTL mapping. Co-ordinates for the 

genetic map markers on the IWGSC RefSeq v1.0 wheat reference genome were obtained by a 

reciprocal alignment of the 90K array marker sequence data with the reference genome, followed by 

a filtering step: physical map positions were added to the map only if they were <50MB from the 

average of the surrounding 20 adjacent markers on the genetic map, with the exception of the 

centromeric regions (and regions with known inter-specific introgressions), where a more subjective, 

chromosome specific approach was taken (Gardner et al. 2016).  
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 For IBS and IBD analyses, multiple-test correction was carried out using R/qvalue, with a threshold 

of q<0.05. QTL distinctness (i.e. where does one QTL end and the next begin) was assessed 

manually for the IBS/IBD analyses, based on observation of QTL continuity, map quality (based on 

agreement between the genetic map and IWGSC RefSeq v1.0 co-ordinates), and recombination 

rate in the genomic region under investigation. Once QTL were separated out, the peak marker 

(minimum q value) was selected as a reference marker for that QTL. For IM/CIM analyses, an initial 

liberal cut-off of –log10p<3 and a window size of 100 markers was used in “find.qtl”. “Fit.qtl" was 

then applied, and QTL retained which had p<0.05 in the fitted model, as well as percentage variation 

explained >1%. Significance thresholds were also estimated by simulation using the sim.sig.thr 

function in R/mpMap to produce a more conservative cut-off. 

QTL results for all traits and analysis approaches were compiled by trait and grouped into unique 

QTLs based on proximity on both the genetic map and the physical positions of the markers on the 

IWGSC RefSeq v1.0 genome, as well as similarity of overall QTL peak shape, i.e. if the peak is in 

approximately the same location, are the patterns of p-values of individual markers/haplotypes also 

the same? QTL were then numbered in order of significance, i.e. the QTL with the highest 

significance value in any analysis was considered ‘QTL1’, and the peak marker of this QTL was 

assigned as the reference marker. Given the apparent inflation of p values in the CIM analysis, only 

the IBS, IBD and IM significance values were used for this ordering of QTLs.  QTLs that were only 

found in the CIM analysis were given a separate numbering system with an “X” prefix (to indicate a 

weakly supported QTL) and listed after all the other QTL. On rare occasions where it was unclear if 

two QTLs were distinct or not, QTL suffixes were used of the form ‘QTL4a’ where the main QTL is 

‘QTL4’ and ‘QTL4a’ may or may not be the same. QTL found only in individual trials, but not the 

meta-analysis of all trials, were prefixed with a trial letter (e.g. B = Bayer) 

3.4.3 Genomic prediction 
Genomic prediction for grain yield (YLD) and three other traits of interest (PHT, SPW, SKT) were 

made using ridge regression in the rrBLUP package v 4.6 (Endelman, 2011) using R v 3.3.3 (R Core 

Development Team, 2013). Training models were built following filtering of individuals for missing 

phenotypic data. Genotypic marker data, where absent, were imputed using the column means of 

each specific marker of interest. Models were trained on the full set of available phenotypic data and 

their counterpart genotype data. For yield, models were built using three years of pre-project data 

(2012, 2013, 2014), and the 2015 project-derived data; for all other traits, models were trained on 

the 2015 phenotypic data. Models were assessed using the Spearman rank correlation between 

model derived phenotype predictions and known phenotypic outcomes for the test set. This was 

compared against the true Spearman rank correlation between the observed phenotypes of the 

training and test sets. This methodology was used to emulate a true breeding programme, in which 

the absolute within year values may alter due to environment, but selection would be imposed based 

on the rank order of lines within a year.  
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3.5 KASP marker development 

Selected SNPs from the 90k array were converted to the Kompetitive Allele-Specific PCR (KASP) 

genotyping platform (LGC Genomics, UK) SNP flanking DNA sequences were used to design KASP 

primers using the software PolyMarker (Ramirez-Gonzalez et al. 2015), supplemented by manual 

inspection and design. DNA oligo ‘tails’ were added to the each of the two allele-specific primers: 5’-

GAAGGTCGGAGTCAACGGATT-3’ (VIC), 5’-GAAGGTGACCAAGTTCATGCT-3’ (FAM). Primers 

were ordered from Sigma-Aldrich, and suspended using PCR-grade water (Sigma-Aldrich) to a 

concentration of 100 μM. DNA for the NIAB Elite MAGIC founders was extracted as described above, 

concentrations determined using a Nanodrop 200 spectrophotometer (Thermo Scientific), and 

diluted to a final concentration of 10 ng/µl using sterile PCR-grade water (Sigma-Aldrich). To 

determine whether KASP markers were co-dominant (i.e. able to robustly detect heterozygote 

alleles), 50:50 by-volume DNA mixtures of founders contrasting for SNP allele call were made, and 

included as controls during marker validation experiments. DNA KASP amplification reactions were 

undertaken using KASP Master Mix (LGC Genomics, UK), following the manufacturers guidelines. 

For each assay, reaction volumes were: 2.5μl KASP V4.0 2x Master Mix, 0.07μl KASP primer mix 

(for primer details, see Appendix 1) and 2.5μl DNA template (or 2.5 μl PCR-grade water for negative 

controls). KASP products were visualised using ProFlex PCR System Thermocycler (Applied 

Biosystems) using the following conditions: 1 cycle at 94 °C for 15 mins; 10 cycles at 94 °C for 20 s, 

65 °C for 60 s with a touchdown of -0.8 °C/cycle to 57 °C; 35 cycles at 94 °C for 20 s, 57 °C for 60 

s; final hold at 10 °C. Fluorescence of VIC and FAM fluorophore 5’ end labelled PCR products were 

subsequently read using a Scientific QuantStudio™ 12K Flex Real-time PCR System (Thermo 

Fisher Scientific). ROX was used as a passive fluorescent reference to allow normalisation of 

variations in signal caused by differences in well-to-well liquid volume, following the manufacturer’s 

instructions (LGC Genomics). Data was further analysed and visualised using Excel (Microsoft, 

USA), and the resulting allele calls compared to the corresponding SNP calls from the Illumina 90k 

SNP array (Gardner et al. 2016).  

3.6 Bioinformatic analysis 

SNPs identified as defining the boundaries of QTL intervals based on the MAGIC Genetic map were 

anchored to the wheat genome physical map (cv. Chinese Spring, IWGSC RefSeq v1.0. IWGSC, 

2018) by BLASTn analyses, as described by Gardner et al. (2016). IWGSC RefSeq v1.0 high- and 

low-confidence gene models present within the intervals defined were outputted, along with their 

corresponding gene annotation data, and candidate genes identified manually by reference to the 

literature. Preliminary gene expression information (versus cultivar, tissue type, treatment type) for 

candidate genes was obtained from the data summarised in public repositories (http://www.wheat-

expression.com/cite and http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi). 
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3.7 Identification of candidate genes and TILLING lines.   

Candidate genes were identified after analysis of relevant published literature for wheat and related 

cereal species. Identification of wheat homologues of known genes from other plant species were 

identified by using their predicted coding regions (CDS) as queries for BLASTn searches of the 

wheat genome (assembly: RefSeq v.10; annotation: RefSeq v1.0. IWGSC, 2018). In order to identify 

artificially induced mutants in candidate genes, CDS were used for BLASTn searches of publicly 

available Targeting Induced Local Lesions IN Genomes (TILLING) mutants created in T. aestivum 

cv. Cadenza and T. durum cv. Kronos (Krasileva et al. 2017), undertaken using an online search 

tool (http://www.wheat-tilling.com/). Mutations in all homoeologues of each candidate gene were 

sought, and mutations ranked by predicted effect on the protein model, as: premature stop codon > 

splice-acceptor/donor mutation > non-synonymous mutation in a conserved protein domain (with 

consideration of SIFT score, which summarises the predicted effect of a given change in amino acid). 

Selected TILLING mutants were ordered from the SeedStor, JIC, UK (https://www.seedstor.ac.uk/), 

grown in 1 litre pots under glasshouse conditions, lead tissue sampled for DNA extraction, and the 

developing ears bagged allowing selfed seed to be collected. 

3.8 NIL development 

For any given target QTL, NIAB Elite MAGIC progeny were identified that were heterozygous across 

the QTL interval, using the existing 90k SNP data for 643 lines. By comparing the pattern of allele 

calls (AA, A:B, B:B) for each SNP within the QTL region with the allele calls of the founders, the 

parental origin of the two alleles present in the region of heterozygosity was determined, where 

possible. These parental contributions to the heterozygous target region in a given line was then 

compared to the predicted allelic effects at the QTL peak, as outputted from CIM analysis. MAGIC 

lines carrying founder alleles with the greatest predicted contrast in phenotypic effect were prioritised 

for NIL development. Sib F5 seed for each of these MAGIC lines was germinated, DNA extracted, 

and genotyped with 2-3 codominant KASP markers (developed and validated as described above), 

allowing individuals to be classified as homozygous (A:A or B:B) or heterozygous (A:B). Each 

individual was grown to maturity in glasshouse conditions, ears bagged, and selfed seed collected. 

Where lines carrying contrasting homozygous alleles at a QTL were identified, these were sown in 

autumn 2018 in 1x1 m plots (consisting of 6x1 m rows per plot) for field bulking and subsequent 

preliminary phenotyping in summer 2019 (post project).    
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4. Results 

4.1 Field trials, phenotyping and trials analysis 

Delivery of Milestones: M1.1, M1.2, M1.3, M1.4, M2.1, M2.2, M2.3, M2.4. 

4.1.1 Trials and phenotyping  

Across both the 2015 and 2016 season, 1109 NIAB Elite MAGIC lines, along with the eight founders 

and one control variety (KWS Santiago), were trialled in yield plots at five UK sites across, as detailed 

in Table 2. At each site, between 390 and 464 MAGIC lines were grown in partial replication, along 

with four replicates of each of each MAGIC founder and 4-8 replicates of KWS Santiago (e.g. Figure 
3), resulting in the delivery of 4,996 yield plots across 2 years. Eighteen traits targeting yield, yield 

components and agronomic traits were measured across the trials and predicted means generated 

using block and spatial analyses, with one model per analysis taken forward, resulting in ~90,000 

phenotypic data points. The full list of MAGIC lines used and the corresponding BLUPs for all 

phenotypes are listed in Appendix 2.  

 

Figure 3. Example of one of the 10 project field trials: establishment and early growth in the BAY-

YLD-15 trial located at NIAB Cambridge in 2015. The trial consisted of 504 plots of 2x6 m each (2x4 

m harvested area), arranged in a randomised block design within a matrix of 8 rows of 63 plots each. 

In this trial, 420 MAGIC lines were grown in partial replicate: 44 lines in 2 replicates and 376 lines in 

1 replicate. Four replicate plots of each of the 8 MAGIC founders were included, along with 8 

replicates of the control variety KWS Santiago.  

4.1.2 Transgressive segregation 

A key advantage of MAGIC mapping populations is the extensive mixing of the alleles underlying 

quantitative traits, helping to ensure transgressive segregation of phenotypes. Considering the pre-

harvest data, almost all traits showed significant transgressive segregation in both directions 

(Appendix 2. Figure 4): all but one trait had ≥5% of lines transgressive in at least one direction, and 
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for 50% of traits, ≥5% of lines were transgressive in both directions. Of the pre-harvest traits, and 

across all sites and seasons, flowering time (as measured by growth stage 55, GS55) and spikelet 

number per ear (SKT) had the lowest number of lines showing transgressive segregation. On 

average, GS55 showed 18% total transgressive segregation, due largely to the low numbers of lines 

(<4%) reaching GS55 before the founder Soissons, which carries the early flowering allele at the 

photoperiod response locus PPD-D1; on average, SKT traits showed 22% total transgressive 

segregation, due largely to the low numbers of lines (<3.5%) with lower spikelet number than the 

founder Soissons.  The highest levels of transgressive segregation (50%) were observed for plant 

height (PHT). This was as expected since all the founders carry exactly one semi-dwarfing allele at 

either the RHT-B1 or RHT-D1 locus which have a major effect on plant stature, but the lines can 

carry 0 or 1 semi-dwarfing allele (i.e. they can be ‘tall’ due to the absence of RHT1 semi-dwarfing 

alleles). Note: lines with 2 semi-dwarfing alleles have been consciously removed from the population 

due to their excessively short stature. As a likely consequence of this, consistently higher proportions 

of lines across all sites and years were higher than the tallest founder (mean = 35%), compared to 

the proportion of lines that were shorter than the shortest founder (mean = 15%).  Spikelet number 

(SKT) also showed a similar trend across sites and years, with 19% lines possessing more spikelets 

than the founder with the highest number of spikelets, compared to 3% of lines possessing fewer 

spikelets compared to the founder with the lowest number of spikelets. Grain yield (YLD) showed 

relatively high mean levels of transgressive segregation (35%), which was predominantly driven by 

lines with lower yield than the lowest founder (Hereward), and with 3% of lines on average yielding 

more than the highest yielding founder (Alchemy). Examining the data in more detail, it is apparent 

that differences in transgressive segregation between years could be found for a number of traits. 

For example, specific weight (SPW) in 2015 and 2016 (21% versus 27%), which is driven by the 

proportion of lines with increased SPW compared to the maximum founder in 2016 compared to 

2015 (12% versus 3%), while the proportion SPW below the minimum founder remained unchanged 

between the years (~17%). Overall, this suggests that substantial inter-annual differences for key 

yield component traits may have occurred during this project. 

 
Figure 4. Example of transgressive segregation in 

the NIAB Elite MAGIC population. Trait: predicted 

means for growth stage 55 (GS55) from the meta-

analysis of all 2016 season trials. The trait scores for 

the 8 founders (Al = Alchemy, Br = Brompton, Cl = 

Claire, He = Hereward, Ri = Rialto, Ro = Robigus, So 

= Soissons, Xi = Xi19) and the control variety KWS 

Santiago (Sa), are indicated.  
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4.1.3 Trait heritabilities  

Heritabilities for all traits, per site, per year, and meta-analysis, are listed in Table 4. Heritability for 

plant height (PHT) and flowering time (GS55) was ~0.90. For specific weight (SPW), heritability was 

slightly lower at ~85%, but with notably high heritabilities in the Limagrain 2015 and RAGT 2016 trial 

sites (h2 = 0.98 and 0.94, respectively). Heritability was around 0.80 for spikelet number (SPK), and 

~0.85 for yield (range: 0.80 for meta-analysis 2016, to 0.93 for the RAGT trial in 2015). The 

heritability for tiller number (TIL) was lower, and more variable between sites and years (mean = 

0.27, minimum = 0 for Elsoms 2015 and RAGT 2015, maximum 0.67 for KWS 2016), reflecting the 

difficulty in accurately phenotyping this trait at scale in the field.  All of the post-harvest grain traits 

showed high heritability, with thousand grain weight (TGW), seed length (LEN), width (WDT), length 

to width ratio (LWR) and area (ARE) all possessing mean h2 >0.82. Seed number per ear (SNO) and 

factor form density (FFD) had mean heritabilities of ~0.70. FFD is a measure of seed density, and is 

a derived trait calculated by dividing seed area by TGW, possibly explaining its slightly lower 

heritability compared to the majority of other seed traits.   

 

4.2 QTL analysis  

Delivery of Milestones: M3.1, M3.2, M3.3, M3.4 

Aim: to identify QTL for yield and yield components in the NIAB Elite MAGIC population. 

Process: For the subset of 643 MAGIC lines with SNP data, QTL analyses were undertaken using 

4 approaches (IBS, IBD, IM and CIM, as described in the Methods section), identifying 376 significant 

(P>0.05) QTL loci across all 21 wheat chromosomes for 18 traits (Appendix 3a), and as summarised 

in Table 5.  For each trait, all QTL detected by any analysis methods were sorted by map location 

and grouped into unique QTLs based on proximity on both the genetic map and the physical positions 

of the markers on the wheat reference genome assembly for cultivar ‘Chinese Spring 42’, IWGSC 

RefSeq v1.0 (IWGSC, 2018), as well as similarity of overall QTL peak shape. They were then 

numbered in order of significance, i.e. the QTL with the highest significance value in any analysis 

was labelled as ‘QTL1’. Given the apparent inflation of p values in the CIM analysis, only the IBS, 

IBD and IM significance values were used for the ordering of QTLs. The mean and median number 

of QTL per trait was 19 and 12, respectively. The highest and lowest significance value of QTL per 

trait were 8 (for awn presence/absence, AWN) and 42 (specific weight), respectively. Chromosome 

6A had the highest number of QTL, with 34 loci identified across 14 traits. The chromosomes with 

the lowest number of QTL were 1D and 5D, both of which had 9 QTL.  
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Trait Year META BAY ELS KWS LIM RAG 
PHT 2015 0.93 0.95 0.92 0.92 0.94 0.98 

 2016 0.92 0.93 0.85 0.93 0.93 0.97 
GS55 2015 0.79 0.96 0.58 0.98 0.86 0.94 

 2016 0.93 0.89 0.93 0.98 0.88 0.94 
YLD 2015 0.72 0.81 0.86 0.91 0.89 0.93 

 2016 0.80 0.89 0.83 0.89 0.83 0.92 
SPW 2015 0.72 0.73 0.86 0.82 0.98 0.87 

 2016 0.76 0.89 0.86 0.89 0.90 0.94 
LLE 2015 NA NA NA NA NA NA 

 2016 0.66 0.48 0.69 0.78 NA 0.94 
LOD 2015 NA NA NA NA 0.80 0.80 

 2016 0.41 NA 0.51 0.95 NA NA 
TIL 2015 0.38 0.62 0 0.56 NA 0 

 2016 0.28 0.14 0.13 0.67 0.14 0.11 
SKT 2015 0.89 0.89 0.92 0.9 0.89 0.84 

 2016 0.81 0.72 0.63 0.72 0.62 0.91 
TGW 2015 0.87 0.8 0.86 0.93 0.92 0.79 

 2016 0.89 0.92 0.90 0.93 0.87 0.69 
LEN 2015 0.88 0.83 0.96 0.86 0.91 0.65 

 2016 0.93 0.94 0.94 0.99 0.83 0.67 
WID 2015 0.79 0.74 0.82 0.83 0.88 0.75 

 2016 0.74 0.92 0.85 0.95 0.89 0.65 
ARE 2015 0.84 0.75 0.90 0.77 0.93 0.60 

 2016 0.91 0.93 0.90 0.97 0.86 0.68 
LWR 2015 0.86 0.84 0.93 0.89 0.84 0.63 

 2016 0.94 0.96 0.94 0.98 0.87 0.59 
FFD 2015 0.59 0.72 0.78 0.65 0.77 0.25 

 2016 0.81 0.93 0.87 0.85 0.87 0.63 
SNO 2015 0.79 0.80 0.74 0.82 0.51 0.37 

 2016 0.71 0.76 0.75 0.85 0.71 0.44 
 

Table 4. Trait heritabilities. Traits: PHT (plant height), GS55 (growth stage 55), YLD (grain yield), 

SPW (specific weight), LLE (lodging x leaning score), LOD (lodging), TIL (tiller number), SKT 

(spikelet number per ear), TGW (thousand grain weight), LEN (seed length), WID (mean seed width), 

ARE (seed area), LWR (seed length to width ratio), FFD (factor form density), SNO (seed number 

per ear), PSH (percent shrivelled seed). Trials: BAY (BAY-YLD-16), ELS (ELS-YLD-16), KWS (KWS-

YLD-16), LIM (LIM-YLD-16), RGT (RGT-YLD-16). NA = not applicable (trait either not expressed, or 

not measured).  
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Trait 

No. 

QTLs 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D U 

AWN 8    1 2        1   1 2   1   
GS55 41 2 3 2  3 3 3   2 3 1 3 2 1 2 2 3 1 4  1 
LEA 4  1 1         1          1 
LLE 6  1   1      1 1  1     1    
LOD 7  1 1      1  1 1    1   1    
PHT 13   1  1 2 3 1 1  1 1    2       
SKT 30   1 1 1 2 1 1 1 2 2 1 1 1 2 3 1 2 3 3 1  
SPW 42 1 1 1 1 5 1 2 1 1 3 3 2 3 1 2 2   5 5 1 1 
TILL 11 3 2           3   2     1  
YLD 23   1  1  2  1 4 3 2  1 1 1 2 1 1 1 1  
ARE 29 2 3  1 1 1  2 1 1 4  3 4 1 2   1  1 1 
CIR 25  3   2 1     2 1 3 2  6 1 1 1   2 
FFD 9    1   1 1 1  1 1 2        1  
LEN 30 2 2  3   2 3 1 2 1 2 1 3 1 3 1  2  1  
LWR 26 1 5  1  3 3    1 1 4 1  3  1 1   1 
PSH 11 1   1  1   1 1 1 1 1     1 1  1  
SNO 12 1   1  2    1 1 1 1    1 1 2    
TGW 26 1 2 1 1 1  1 2 1 2 2 1 1 3 1 3     2  
VWT 12  1  1  1 1 1 1  2 1 2 1         
WID 11 1 1  1   1    2 1    3  1     

 Totals: 15 26 9 14 18 17 20 12 11 18 31 20 29 20 9 34 10 11 20 14 10 7 
 

Table 5. Summary of distribution of QTLs across chromosomes, detected for the 20 yield/yield component traits investigated in 10 sites over 2 years. 

Here, the lodging trait (LOD) has also been separated into leaning (LEA) and lodging + leaning (LLE) traits.    
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To identify chromosomal regions containing QTL shared between traits, all 2015 and 2016 season 

QTLs were sorted based on the genetic map (Gardner et al. 2016), and then by physical map location 

(IWGSC, 2018). Predicted founder allelic effects at the QTL peaks were also compared, in order to 

help determine QTL clusters. To help determine the expected resolution of QTL mapping, the highly 

non-recombining regions spanning the centromeres, as determined by comparison of SNP genetic 

map position versus physical map position, were identified. Where QTL mapped to these regions, 

they were generally grouped together into a single cluster of QTL, due to the lack of genetic 

recombination present. A total of 95 chromosomal regions were found to share QTL for two or more 

traits (Table 6; Appendix 3b). Of these, the following QTL number per chromosomal location 

combinations were found: 2 QTLs (33 locations), 3 QTL (23 locations), 4 QTL (11 locations), 5 QTL 

(11 locations), 6 QTL (10 locations), 7 QTL (4 locations), 8 QTL (1 location), 12 QTL (1 location) and 

15 QTL (1 location). The major semi-dwarfing loci RHT-B1 and RHT-D1 possessed the highest 

number of co-localizing QTL (12 and 15, respectively). Additionally, the major photoperiod response 

locus PPD-D1 had 6 co-localising QTL. The major QTL on chromosome 7A known to affect spikelet 

number (e.g. Quarrie et al 2005, 2006; Boeven et al. 2016) co-localised with four other grain traits 

(PSH, SNO, SPW and LWR).  A total of 34 of the 95 multi QTL regions contained QTL for flowering 

time (GS55), which is known to often have pleiotropic effects on other traits. For grain yield, 24 QTL 

that co-localised with one or more QTL for other traits were detected. Of these, seven co-localised 

with QTL for GS55, and one for lodging (chromosome 2B). An additional three yield QTL co-localised 

with plant height, and one yield QTL co-localised with a tiller number QTL on chromosome 7D. The 

remaining co-localising yield QTL were associated with QTL for grain traits, sometimes in conjunction 

with QTL for spikelet number. Finally, excluding the RHT-B1 and RHT-D1 loci, a subset of five 

chromosomal regions contained notably high (≥7) numbers of QTL. Of these, one was located within 

a highly non-recombining region of the chromosome, and so was excluded from further analysis here 

(chromosome 5A, location 3. Termed 5A-3). Location 3A-1 contained QTL for six grain traits (CIR, 

FFD, LWR, SPW, TGW, WID), as well as a QTL for yield. Location 3D-1 contained QTL for five grain 

traits (ARE, FFD, LEN, SPW, VWT), as well as WTL for spikelet number and plant height. Location 

5B-2 contained QTL for five grain traits (ARE, LEN, TGW, VWT, SPW) as well as QTL for spikelet 

number and lodging. Location 5A-4 contained QTL for six grain traits (CIR, FFD, LWR, PSH, SNO, 

VWT) as well as QTL for spikelet number and flowering time.  



22 
 

Notes Chr. 
Locus 
No. 

No. 
QTL Traits 

C 1A 1 3 PSH, SNO, TIL 
C 1A 2 2 LWR, SNO 
  1A 3 3 GS55, LEN, SPW 
  1A 4 3 GS55, LEN, TIL 
  1A 5 2 ARE, WID 
  1A 6 3 ARE, LEN, TGW 
  1B 1 2 GS55, LOD 
  1B 2 3 CIR, LOD, LWR 
C 1B 3 6 ARE, CIR, GS55, LEN, LWR, TGW 
  1B 4 2 CIR, LWR 
  1B 5 2 LWR, LWT 
  1B 6 4 CIR, LWR, SPW, VWT 
  1B 7 5 CIR, LEN, LWR, TGW, WID 
  1D 1 3 LEA, LOD, TGW 
  1D 2 2 GS55, YLD 
C 2A 1 4 LEN, LWR, SKT, SNO 
C 2A 2 3 PSH, SNO, TIL 
C 2A 3 2 LWR, PSH 
  2A 4 5 SKT, SNO, SPW, TIL, VWT 
  2A 5 4 PSH, SKT, SNO, WID 
  2A 6 4 ARE, FFD, LEN, TGW 
  2B 1 2 LOD, YLD 
  2B 2 2 AWN, SPW 
  2B 3 2 ARE, GS55 
PPD-D1 2D 1 6 ARE, CIR, GS55, PHT, SKT, SNO 
  2D 2 4 GS55, LWR, PHT, SKT 
  2D 3 3 CIR, LWR, SPW 
  3A 1 7 CIR, FFD, LWR, SPW, TGW, WID, YLD 
  3A 2 3 LWR, TGW, YLD 
  3A 3 3 LWR, SPW, YLD 
C 3A 4 2 PHT, VWT 
C 3A 5 3 GS55, LEN, PHT 
  3A 6 2 GS55, PHT 
  3A 7 3 CIR, LEN, LWR 
  3A 8 4 CIR, GS55, LEN, LWR 
  3B 1 2 SKT, VWT 
C 3B 2 4 ARE, FFD, LEN, TGW 
  3B 3 3 ARE, LEN, SPW 
  3D 1 7 ARE, FFD, LEN, PHT, SPW, SKT, VWT 
  3D 2 6 FFD, PHT, PSH, SKT, TGW, YLD 
  4A 1 3 SPW, TGW, YLD 
  4A 2 2 GS55, SPW 
  4A 3 2 LEN, YLD 
  4A 4 6 GS55, LEN, PSH, SKT, SNO, YLD 
  4A 5 2 SPW, YLD 
  4A 6 6 ARE, GS55, LEN, SKT, TGW, YLD 
 RHT-B1 4B 1 4 FFD, LWR, SKT, VWT 

  4B 
 

2 12 
ARE, CIR, FFD, LWR, PHT, PSH, SNO, SPW, TGW, WID, 
YLD, VWT 

  4B 3 3 SPW, VWT, YLD 
  4B 4 2 SPW, VWT 
  4B 5 6 GS55, LLE, LOD, SKT, VWT, YLD 
  4B 6 5 WID, ARE, GS55, LEA, SPW 
  4B 7 5 ARE, CIR, GS55, LEN, TGW 
 RHT-D1 4D 1 3 GS55, SPW, TGW 

  4D 
 

2 15 
CIR, FFD, LEA, LEN, LLE, LOD, LWR, PHT, PSH, SKT, SNO, 
SPW, VWT, WID, YLD 

  5A 1 4 CIR, CIR, LWR, TIL 
  5A 2 5 ARE, CIR, GS55, LEN, LWR 
C 5A 3 7 CIR, ARE, CIR, GS55, LWR, TGW, TIL 
  5A 4 8 CIR, FFD, GS55, LWR, PSH, SKT, SNO, VWT 
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  5A 5 3 TIL, SPW, VWT 
  5A 6 2 ARE, SPW 
  5A 7 3 AWN, FFD, GS55 
  5B 1 3 LEN, TGW, YLD 
  5B 2 7 ARE, LEN, LLE, SKT, SPW, TGW, VWT 
  5B 3 4 SPW, ARE, TGW, VWT 
  5B 4 5 LEN, ARE, CIR, GS55, LWR 
  5D 1 5 ARE, LEN, TGW, SKT, YLD 
  6A 1 2 CIR, GS55 
  6A 2 2 CIR, LEN 
  6A 3 5 CIR, LWR, SKT, SPW, YLD 
  6A 4 4 CIR, PHT, TGW, WID 
  6A 5 2 CIR, LWR 
GW2  C 6A 6 6 ARE, LEN, PHT, TGW, TIL, WID 
  6A 7 2 SKT, TGW 
  6A 8 6 CIR, GS55, LEN, LWR, SKT, TIL 
  6A 9 5 ARE, LEN, LOD, SPW, TGW 
  6A 10 2 AWN, WID 
  6B 1 2 GS55, YLD 
  6B 2 2 GS55, YLD 
  6B 3 2 SKT, SNO 
  6D 1 6 CIR, GS55, LWR, PSH, SNO, YLD 
  6D 2 2 GS55, SKT 
  6D 3 2 GS55, WID 
  7A 1 2 ARE, SPW 
  7A 2 5 ARE, LEN, SKT, TGW, YLD 
 7A-SKT 7A 3 5 PSH, SKT, SNO, SPW, LWR 
  7A 4 6 GS55, LLE, LOD, SKT, SNO, SPW 
 VRN3 7B 1 2 GS55, SKT 
  7B 2 2 GS55, SPW 
  7B 3 2 SKT, SPW 
  7B 4 3 SKT, SPW, YLD 
  7B 5 3 GS55, SKT, SPW 
  7D 1 3 FFD, TGW, TIL 
  7D 2 3 PSH, TIL, YLD 
  7D 3 2 ARE, TGW 

 

Table 6. Summary of co-localised QTL identified in the MAGIC population. Trait abbreviations as 

listed in the Methods section. Locations of known major effect genes are indicated. 7A-SKT = the 

major effect QTL for spikelet number previously reported (e.g. Quarrie et al. 2005, 2006; Boeven et 

al. 2016). C = QTLs that lie within the highly non-recombining regions surrounding the centromere, 

based on comparison of the genetic map position (Gardner et al. 2016) versus the physical map 

(IWGSC, 2018).  
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4.3 Development of molecular markers tagging QTL 

Delivery of Milestones: M4.1, M4.2 

Aim: to develop simple, cheap molecular markers for genetic variants identified using the 90k SNP 

array as tagging the most promising yield and yield component QTL identified in the MAGIC 

population.  

 
Process: Of the 376 QTL identified, 20 were selected for the development of KASP genetic markers 

(primers listed in Appendix 1, prioritised QTL listed in Appendix 4). KASP markers allow flexible 

and cheap genotyping of individual SNPs identified using the 90k SNP array, and are commonly 

used by the project partner wheat breeding companies. For each target QTL, 3-5 of the most 

significant SNPs within the QTL peak were selected for conversion to KASP. For a given QTL, SNPs 

were prioritised for KASP conversion where allele calls (A:A or B:B) matched the pattern of predicted 

allelic effects of the founders for the target QTL. For example, where A:A alleles at a target SNP 

were carried by founders predicted to confer increased grain size, and B:B alleles were carried by 

founders predicted to confer decreased grain size. Note: due to QTL overlap, the 20 QTL selected 

were represented by 18 genomic regions  

 

KASP markers were validated by genotyping DNA extracted from each of the eight founders, as well 

as a 50:50 mix of two founders known to carry contrasting alleles at the SNP – creating an ‘artificial 

heterozygote’ (allele A:B), making it possible to determine if the KASP marker tested was co-

dominant (i.e. able to detect heterozygotes). For each SNP, KASP genotyping results from the 

founders were compared to those derived from the 90k SNP array. In this way, a total, 58 co-

dominant KASP markers were validated for the 20 QTL targeted, following the methods listed in 

Section 3.5. These markers displayed the following ‘KASP number per QTL’ summary statistics: 

median = 3, mode = 3, minimum = 1 (QTLs for seed weight on chromosome 4B and yield on 7D), 

max = 8 (for the co-locating QTLs TIL_6A, FFD_6A, WID_6A, TGW_6A.1, TGW_6A.2). An example 

of the process of converting SNPs from the 90k Illumina SNP array to the KASP genotyping platform 

is illustrated in Figure 5. 

 
Deliverables: 58 ‘breeder friendly’ co-dominant KASP markers tagging 20 yield/yield component 

QTL were successfully validated, and the associated information on how to use these in practice 

distributed to all project partners. Based on the KASP genotyping platform used by all industrial 

project partners, these resources provide the partnering wheat breeding companies the ability to 

explore the tracking and manipulation of beneficial alleles for multiple QTL within their breeding 

programmes. 
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Figure 5. Illustration of the process for development of KASP markers tagging targeted QTL. Trait: 

spikelet number per ear (SKT). (A) Field trials and phenotypic data collection. (B) Genetic mapping 

to identify QTL, genetic map of chromosome 7 shown. (C) Predicted allelic effects at the QTL 

determined. Al = Alchemy, Br = Brompton, Cl = Claire, He = Hereward, Ri = Rialto, Ro = Robigus, 

So = Soissons, Xi = Xi19. Brompton and Robigus are predicted to carry alleles with strong effect on 

reducing spikelet number per ear. (D) Conversion of a SNP at the peak of the QTL to the KASP 

genotyping platform. Brompton and Robigus (A:A) have contrasting alleles to all other MAGIC 

founders (B:B). A 50:50 mix of DNA from founders with contrasting allele calls (MIX) was used to 

determine whether the marker was capable of detecting heterozygote alleles, and so represent a co-

dominant marker. VIC and FAM fluorescence is shown on the X and Y axis, respectively. 

 

4.4 Development of near isogenic lines for selected QTL 

Delivery of Milestones: M4.4, M4.5 (for M4.5, see also Section 4.5) 

Aim: to develop wheat ‘nearly isogenic lines’ (NILs) for target QTL, providing the resources for future 

studies to undertake detailed characterisation of QTL in isolation, and provide the basis for map-

based cloning - the identification of the specific gene and genetic variants underlying each QTL. 
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Process: For any given QTL identified in the MAGIC population, a NIL pair represents a pair of lines 

that are on average 98% identical at the DNA level, but contrast for alleles carried at the target QTL. 

As the genetic background in NIL pairs has essentially been fixed, NILs can be used for precise 

characterisation of QTL effects largely independent of the effects of interacting alleles present in 

other regions of the genome. For example, NILs can be used for: (1) detailed phenotypic 

characterisation of a QTL, at resolutions ranging from evaluation in field experiments, right down to 

investigations at the sub-cellular level, (2) detailed analysis of differences in gene expression 

associated with each allele, and (3) a NIL pair can be inter-crossed to generate genetic 

recombination within the QTL interval that may ultimately result in allowing the underlying genetic 

variant to be identified. Therefore, NILs represent powerful resources for precise evaluation of QTL 

phenotypic effects, and ultimately the development of ‘perfect’ genetic markers for use in breeding 

programmes. Such perfect markers differ from ‘linked markers’ (such as those developed here in 

Section 4.3) in that they directly assay for the specific genetic variants in the underlying gene, rather 

than genetic variants at locations closely linked to the underlying gene. NIL development normally 

takes many generations to complete. However, we used the residual heterozygosity present in the 

MAGIC recombinant inbred lines (RILs) to identify NILs in just one generation, following the 

methodology listed in Section 3.8. This was possible because the RILs used for 90k SNP genotyping 

were at the F5 stage of inbreeding, and so still expected to possess low levels of heterozygosity 

(~2%). Therefore, of the 643 MAGIC F5 RILs, on average ~13 lines are expected to be heterozygous 

for any given chromosomal location. The process of NIL development is illustrated in Figure 6. 

 

We used the existing 90k SNP data (NIAB unpublished data, curated from the data published by 

Gardner et al. 2016) to identify F5 MAGIC RILs heterozygous at each of our target yield/yield 

component QTLs. Between 2 and 4 RILs were selected for each of the 20 QTL prioritised in Section 

4.3 (Appendix 4). As the F5 RIL seed is old, germination was often low. Despite this, we were able 

to germinate ≥1 individuals for 34 of the 46 RILs selected for 18 of the 20 QTL (Appendix 5a). Five 

RILs were heterozygous across more than one target QTL: RIL10 for WID_3B / SPW_3B and 

TGW_3B, RIL33 for FFD_6A and WID_6A, RIL36 for LEN_1B.2 and TGW_6A, RIL42 for WID_6A 

and TIL_6A, and RIL44 for TGW_6A and WID_6A. All individuals from each RIL that germinated 

were genotyped with the relevant co-dominant KASP markers developed in Section 4.3, in order to 

identify individuals carrying either homozygous A:A or homozygous B:B alleles. Where one or more 

individual of each homozygous allele class where identified (i.e. ≥1 A:A individual and ≥1 B:B 

individual), then the NIL pair was identified, and the relevant individuals grown to maturity and selfed 

seed collected. For RILs where it was not possible to identify ≥1 individual from each homozygous 

allele class, if ≥1 heterozygous F5 RIL individual was identified, these were selfed, the resulting seed 

grown, and homozygous A:A and B:B individuals sought via KASP genotyping. Following this 

approach, 22 of the 34 RILs that resulted in germination of ≥1 seed were found to either possess 

individuals for both of the homozygous allele classes (14 RILs, representing 12 QTL), or failing that, 
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possess heterozygotes - allowing individuals homozygous for each of the two alleles to be searched 

for via KASP genotyping in the subsequent generation.  

 
Figure 6. Illustration outlining the process of developing a near isogenic line (NIL) pair for a target 

QTL. (A) QTL localised to a specific chromosomal region. (B) Allele calls at genetic markers at the 

QTL are analysed in the MAGIC recombinant inbred lines (RILs). RILs found to be heterozygous at 

the target QTL using the genotypic data derived from the 90k SNP array are identified (Line1, Line2 

here). For each of these RILs, on a marker-by-marker basis, SNP allele calls present in the RIL is 

compared to SNP calls in the founders in order to determine, where possible, the two founders that 

contributed to the region of heterozygosity. RILs heterozygous across the QTL interval predicted to 

carry alleles from founders with contrasting allelic effects at the QTL are selected for NIL production 

- here, the region of heterozygosity within the QTL interval is predicted to come from the founders 

Brompton (B) and Hereward (H), themselves predicted to have strongly contrasting allelic effects for 

the target QTL. (C) Sib F5 seed for the selected RIL is grown, the plants genotyped using KASP 

markers assaying for SNPs at the QTL, and individuals carrying contrasting homozygous alleles (A:A 

or B:B) identified. These two individuals represent a NIL pair. They are grown to maturity, and selfed 

seed collected. (D). This seed is then grown and selfed seed collected, providing seed bulks for the 

NIL pair, to be used for downstream R&D, e.g. conformation of phenotype via field and glasshouse 

experiments. 

 

These resources provided the potential to develop one or more NIL pair for all but two of the 18 QTL 

for which F5 seed was available: LEN_3B and TIL_5A. Post project, we are currently finalising the 

following NIL resources to underpin subsequent R&D:  
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(A) NIL field multiplication and preliminary phenotyping: 1x1 m nursery plots for seed bulking were 

sown in October 2018 for all 14 RILs found to possess individuals from both homozygous classes 

(Appendix 5b). Preliminary phenotyping of yield and yield component traits will be carried out in 

these nursery plots in summer 2019. For many RILs, the seed stocks available allowed more than 

one plot per homozygous allele to be sown (Table 7; Appendix 5b), which will allow phenotypic 

data to be collected from replicated plots. Interestingly, MAGIC RIL36 segregates for QTL at two 

locations: LEN_1B.2 and TGW_6A. Of the four possible allelic combinations at LEN_1B.2 and 

TGW_6A, three are present in the germplasm sown: B:B + B:B (2 plots), A:A + B:B (1 plot), B:B + 

A:A (5 plots). This germplasm will allow interactions at the phenotypic and gene expression level 

between the seed length QTL on chromosome 1B and the thousand grain weight QTL on 

chromosome 6A to be determined in fine detail within a single genetic background.  

 

(B) Recovery of additional NILs: for 7 RILs, although both homozygous allele classes were not 

identified in our first screen, we were able to identify lines which were heterozygous at the target 

QTLs, which when selfed, will allow the identification of A:A and B:B individuals, and thus generate 

NIL pairs. We are currently screening this germplasm using the relevant KASP markers developed 

in Section 4.3. If successful, the project will have developed NILs for 15 yield/yield component QTL, 

available for downstream R&D. It would also be possible to develop NILs for additional QTL. 

 
Deliverables: NILs for 15 yield/yield component QTL were either developed, or are close to 

finalisation, with 14 NILs for 12 QTL currently being grown for field seed bulking and to verify whether 

NIL pairs contrast for target phenotype. This germplasm, and the associated MAGIC molecular 

resources, provide the raw materials for future work to identify the underlying genes/genetic variants, 

with the aim of providing ‘perfect markers’ for exploitation in wheat breeding programmes. 

 

Target QTL 

 
MAGIC RIL 
code 

Number of 1x1m field 
plots (allele A:A, allele 
B:B) 

LEN_1B.2 RIL39 3, 4 
LEN_1B.2 RIL36† 12, 3 
YLD_2B RIL25 3, 1 
YLD_3A RIL31 1, 1 
TGW_3B, WID_3B, SPW_3B RIL10 2, 1 
LEN_5A RIL11 8, 5 
LEN_5A RIL26 2, 4 
LWR_5D RIL28 1, 1 
TGW_6A RIL36† 3, 1 
TIL_6A RIL21 8, 6 
SKT_7A RIL9 12, 7 
YLD_7D RIL12 1, 1 
YLD_7D RIL13 5, 1 

 



29 
 

Table 7. NIL germplasm sown in October 2018 at NIAB, Cambridge for field multiplication and 

preliminary phenotyping. †MAGIC RIL36 segregates for QTL at two locations: LEN_1B.2 and 

TGW_6A. Of the four possible allelic combinations at these two QTL, three are present in the 

germplasm sown: B:B + B:B (2 nursery plots), A:A + B:B (1 plot), B:B + A:A (5 plots). 

 

4.5 Identification of candidate genes and TILLING 

Milestones delivered: M4.4, M4.5 (see also Section 4.4) 

Aim: Identify candidate genes within selected QTL for the identification and development of TILLING 

resources, as well as for other future gene validation approaches.  

 
Process: For each QTL, the identification of candidate genes (i.e. genes thought using existing 

published knowledge to possibly represent the underlying gene, due to involvement in the control of 

similar phenotypes in other plant species) was based on two steps: 

(1) Definition of gene content within QTL regions: A subset of 53 yield and yield component QTLs, 

defining 44 chromosomal locations, was selected (Appendix 4). The physical map locations of the 

genetic markers marking the QTL boundaries were used to define QTL physical intervals and to 

identify the predicted gene content - based on IWGSC RefSeq v1.0 gene models for the reference 

wheat cultivar Chinese Spring. The smallest number of predicted gene models identified within a 

given QTL was 6 (for the seed area QTL on chromosome 5B), the largest was 549 (seed shape QTL 

on 4B) and the median was 65 (seed weight QTL on 3B). Predicted gene numbers and further 

information for all 53 QTL are listed in Appendix 4. 

(2) Identification of candidate genes: using the publicly available functional annotations of the genes 

identified in step 1 above, and a review of the available literature for wheat and related cereal 

species, we searched for candidate genes within each QTL interval. For example, focusing on grain 

size characters, a list of 26 rice genes known to control gain size was identified in the literature, of 

which gene sequence was publicly available for 25 genes (Appendix 6). Using the CDS of these 25 

rice genes as queries for BLASTn searches of the wheat genome identified 125 wheat homologues 

(Appendix 6). Based on established collinearity between the genomes of the related cereal species 

rice and wheat, 24 of the 25 rice genes were found to contain putative orthologues in wheat. The 

only exception was the rice gene GRAIN SIZE 5 (GS5, MSU gene model LOC_Os05g06660, Li et 

al. 2011), a putative serine carboxypeptidase for which wheat is predicted by collinearity to possess 

orthologous genes on the group 1 chromosomes, but for which we identified wheat homologues on 

chromosomes 3A, 3B and 3D (RefSeq v1.1 gene models TraesCS3A02G212900LC, 

TraesCS3B02G277100LC and TraesCS3D02G172900, e-values ≤2e-27). In total, across all 53 

QTL, 41 candidate genes were identified (listed in Appendix 4).  The number of candidate genes 

per QTL ranged from 0 (for 19 QTL) to 3 (for 7 QTL: seed width on 3B; seed length 3B; tiller number 

5A; seed length on 5A; seed shape on 5D; TGW on 6A; spikelet number on 7A).  
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Determining candidate genes is a key step towards identifying the gene and genetic variant at a 

given QTL. In addition to seeking to capture additional genetic recombination, to help determine 

whether natural allelic variation at a given gene underlies a QTL, functional validation is commonly 

sought using germplasm carrying artificial mutations at the candidate gene of interest. In this way, 

genes located within a QTL interval can be prioritised or discounted as useful candidates. Termed 

‘Targeting Induced Local Lesions IN Genomes’ (TILLING) populations, such resources represent 

collections of seed that have been artificially mutated using the chemical ethyl methanesulfonate 

(EMS). Treatment with EMS predominantly induces single nucleotide changes in the DNA, termed 

‘point mutations’. In wheat, TILLING populations are available in both tetraploid (cv. Kronos) and 

hexaploid (cv. Cadenza) wheat. These TILLING populations have been sequenced at the DNA level 

via a technique called exome capture, and the results databased in a way to allow users to search 

for EMS derived mutations in their target genes (Krasileva et al. 2017). Mutations within a target 

gene can be broadly categorised into four classes, based on the type of effect they are predicted to 

have on the protein encoded by the gene:  

(i) Premature stop – result in truncation of the protein, and so are predicted to have a strong 

effect on protein function. Mutations that truncate large regions of the protein are predicted 

to have the greatest effect on function.  

(ii) Splice mutation – may cause the RNA transcribed from the gene to be ‘miss-spliced’, leading 

either to a premature stop codon in the protein (and so result in a truncated protein) or to 

deletions/additions of amino acid residues within the protein.  

(iii) Missense mutation – result in a change of a single amino acid within the protein, which may 

have an effect on protein function depending on how critical the amino acid is to protein 

function.  

(iv) Sense mutation – while there is a single nucleotide change at the DNA level, no amino acid 

change is predicted at the protein level. This class of mutation is not commonly expected to 

have an effect on gene/protein function.  

 

Generally, the aim when exploiting TILLING populations is to identify mutations most likely to have 

an adverse effect on protein function, and therefore have a strong effect on phenotype. Accordingly, 

type i or ii mutations are preferable to type iii mutations. In addition, for tetraploid wheat (where we 

expect two homoeologous copies of each gene, one on each of the A and B sub-genomes) it is 

preferable to identify mutations in both homoeologous copies of the target gene, i.e. from the A and 

B sub-genomes. Similarly in hexaploid wheat (where we expect three homoeologous copies of each 

gene), we aim to identify mutations in all three homoeologous copies of the target genes, i.e. from 

the A, B and D sub-genomes. As the presence of one functional homoeologue can buffer the effect 

of mutation in another homoeologue, to maximise the observable phenotypic effect of a given 

candidate gene, deleterious mutations at all homoeologues should ideally be combined into a single 

genetic background. For example, in the tetraploid variety Kronos, a line carrying a deleterious 
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mutation at the A homoeologue must be crossed with a line carrying a deleterious mutation at the B 

homoeologue to create an F1 individual (Figure 7). This F1 is then grown and selfed F2 seed 

collected, and F2 progeny selected that are homozygous for the mutations at both the A and B 

homoeologues, via the use of genetic markers. Subsequently, backcrossing combined with marker 

selection for the candidate gene homoeologues is normally undertaken to remove background 

mutations that may affect phenotype, followed by one round of selfing to recover line(s) homozygous 

for the target mutations, followed by selfing to generate bulked seed for subsequent phenotypic 

evaluation. Note: it is also possible to cross tetraploid and hexaploid wheat, so if for example no 

suitable mutation was identified in hexaploid Cadenza for the B homoeologue, a B homoeologue 

mutation from tetraploid Kronos could be crossed into a hexaploid background.  

 

Figure 7. Example of a crossing scheme to generate a 

line containing homozygous TILLING mutant alleles at a 

target gene located on the A and B sub-genomes of the 

tetraploid wheat variety, Kronos. (1) TILLING lines 

carrying homozygous mutations at homoeologues on the 

A (a:a) and B (b:b) sub-genomes are identified. (2) The 

two TILLING lines are crossed to generate an F1 

heterozygous for mutant alleles at both homoeologues 

(Aa:Bb), the F1 selfed, and an F2 individual homozygous 

for mutant alleles at both homoeologues (aa:bb) selected 

using genetic markers. (3) This individual is backcrossed 

to Kronos over two generations to remove background 

mutations. Genetic markers are used to ensure an 

individual carrying mutations at both homoeologues 

(Aa:Bb) is selected at the end of the second backcross. 

(4) This individual is selfed, and progeny homozygous for 

the target mutation at both homoeologues selected using 

genetic markers.  

 

Here, we used DNA sequence from the coding regions (CDS) of 30 of our candidate genes to search 

the exome-capture sequenced TILLING populations of cv. Kronos and cv. Cadenza for lines carrying 

EMS induced mutations predicted to affect protein function. Considering both Kronos (A and B sub-

genomes) and Cadenza (A, B and D), class i and ii mutations predicted to have an extreme impact 

on protein function were found for 45 of the estimated 90 homoeologues (i.e. 30 target candidate 

genes x 3 sub-genomes = 90 homoeologues) (Table 8. Appendix 7). Of these, highly deleterious 

mutations of all homoeologues within both Kronos (A and B sub-genome homoeologues) and 

Cadenza (A, B and D) were identified for 7 candidate genes: 5 from Kronos (genes 8, 13, 16, 22, 
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and 30) and 4 from Cadenza (genes 1, 3, 8, 16). It is notable that for 5 genes, no homoeologues 

were identified by BLASTn analyses on one of the sub-genomes (e.g. gene 4 appeared to lack the 

D homoeologue. Table 8). The lack of a homoeologue means that it is not necessary (or possible) 

to identify a TILLING mutant for that sub-genome. Taking these 5 instances into account, the number 

of genes with highly deleterious mutations on all homoeologues present in the genome rose from 7 

to 9 (see gene 15 and 33, Table 8). Therefore, highly deleterious mutations for all of the 

homoeologues present, either within Kronos or within Cadenza, were identified for 30% of all the 

candidate genes investigated (9/30: genes 1, 3, 8, 13, 15, 16, 22, 30, 33). Of the remaining 21 

candidate genes, an additional 12 genes were identified that lacked all but one of the homoeologues 

present in the genomes of either Kronos (i.e. 1 of the 2 homoeologues mutated/absent) or Cadenza 

(i.e. 2 of the 3 homoeologues mutated/absent) (genes 2, 6, 9, 10, 11, 12, 14, 19, 23, 27, 28 and 34). 

As gene 14 represented the well-characterised gene Rht-B1, this was excluded from further analysis. 

For the remaining 11 candidate genes, the presence of just one remaining putatively functional 

homoeologue increases the chance of observing phenotypic effect. Thus, the total number of 

candidate genes for which we predict we would be able to identify strong phenotypic effect, due to 

the mutation of all or all but one of the homoeologue in the genome, was 20 of the 30 genes 

investigated (67%).  

 

TILLING lines containing highly deleterious mutations for 17 candidate genes (targeting 36 

homoeologues via 33 TILLING lines) were ordered from the JIC SeedStor (Table 8). Of these, no 

seed was available for one line (for gene 35), and so was not progressed. Note: some TILLING lines 

contain deleterious mutations in two of the homoeologues we selected to target, so the number of 

TILLING lines ordered was less than the total number of homoeologues we targeted. Seed for the 

32 TILLING lines received was sown, grown to maturity under glasshouse conditions, the developing 

ears selfed, seed harvested, and the bulked seed stored in the long term seed store for future use. 

Additionally, leaf tissue samples were also collected from each line, and genomic DNA extracted for 

future use. Subsequently, TILLING lines were also ordered for 6 genes for which severe TILLING 

mutations were identified in either all homoeologues, or in all but one of the homoeologues present 

(for genes 2, 6, 11, 23, 27 and 28).  Thus, in total we have progressed TILLING germplasm resources 

for a total of 23 candidate genes. 

 

It should be noted that as well as the highly deleterious mutations (class i and ii) discussed above, 

missense mutations (class iii) were also searched for across all candidate genes (Appendix 4). The 

effect of missense mutations is harder to predict, and so are normally exploited where no highly 

deleterious mutations are available. In this study, where highly deleterious mutations were either (i) 

not found at all in Kronos, or (ii) found for just one homoeologue in Cadenza, it is less likely we would 

be able to detect notable phenotypes using highly deleterious mutations alone, given the buffering 

effect of the remaining functional homoeologues. This was the case for 7 candidates: genes 2, 5, 
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20, 24, 25, 26, 31. In these cases, it could be beneficial to explore the available missense mutations. 

However, given the difficulty in predicting which missense mutations are likely to affect phenotype, 

and the work involved in crossing and phenotyping TILLING mutants, it would be more prudent to 

attempt such work in the tetraploid Kronos genetic background, rather than hexaploid Cadenza, as 

there are fewer numbers of homoeologues involved. All missense mutations identified for these 7 

genes, and for all other candidate genes, are listed in Appendix 4, and available for future study. 

We note that even when considering missense mutations, three candidate genes still lacked 

mutations in all homoeologues: genes 2, 5 and 31. For these, if functional validation was required, 

alternative methods such as gene editing or RNA silencing, would need to be explored.  

 

Deliverables: TILLING resources carrying highly deleterious mutations for either all homoeologues, 

or all but one homoeologue, were identified for 23 of the 30 candidate genes investigated, and seed 

and DNA resources developed. Additionally, TILLING resources for all but 3 of the remaining 

candidate genes were identified. Collectively, these resources provide the foundation with which 

future studies can functionally validate the candidate genes. Accordingly, these artificial mutants can 

potentially be used to either, (i) help identify the gene and natural genetic variants underlying the 

QTLs identified, or (ii) be used directly in breeding programmes.  
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TILLING lines ordered5 

1 C C/K C  Y Y  Y C-stopA, C-stopB, C-stopD  
2 X K X   Y   K-stopB 
3 C/K C C  Y Y  Y C-mis, C-stopB, C-stopD 
4 X C No D    (Y)  C-stopB  
5 X X X       
6 X K X   Y   K-stopB 
7 ni ni ni       
8 C/K C/K C Y Y   Y K-stopA, K-stopB 
9 C/K C X   Y Y  C-spliceA, CstopB 
10 X K X   Y   K-stopB 
11 X C/K X   Y   K-stopB, K-stopB 
12 X C/K X   Y   K-stopB 
13 C/K K C Y   Y Y C-stopA, K-stopB, C-stopD 
14 X C C    Y  Not investigated (Rht-B1) 
15 No A C/K C (Y) (Y)   (Y) C-stopB, C-stopD 
16 C/K C/K C Y Y   Y K-missA, C-missA, C-stopB,C-stopD 
17 ni ni ni       
18 ni ni ni       
19 X K X   Y   K-stopB 
20 X X X       
21 ni ni ni       
22 C/K C/K X Y   Y  K-stopA, K-stopB 
23 X C/K C   Y Y  K-stopB, K-spliceD 
24 X C X      C-stopB 
25 X C X       
26 C X X       
27 C/K X X   Y   K-stopB 
28 C No B X    (Y)  C-stopA 
29 ni ni ni       

30 C/K C/K X Y   Y  
K-stopA, K-stopB, C-stopA,C-stopB, 

C-stopD 
31 X C X       
32 ni ni ni       
33 C No B C  (Y)    C-stopA, C-stopD 
34 C No B X    (Y)  C-stopA 
35 K X X    Y  K-stopA†, K-misB, K-misB 
36 ni ni ni       
37 ni ni ni       
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Table 8. Summary of highly deleterious (i.e. premature stop or splice site mutations) in the candidate 

genes identified within yield/yield component QTL, considered at the sub-genome (A, B, D) level. ‘C’ 

= ≥1 highly deleterious mutations identified in Cadenza. ‘K’ = ≥1 highly deleterious mutations 

identified in Kronos. ‘X’ = no highly deleterious mutations identified. ‘No A’ or ‘No B’ or ‘No D’ = no 

homoeologue identified for the A, B or D sub-genome, respectively. ‘ni’ = not investigated.  
1Candidate gene numbering as listed in Appendix 7. 2Highly deleterious mutations identified in all 

Kronos homoeologues. 3Highly deleterious mutations identified in all Cadenza homoeologues. 4All 

homoeologues mutated in either Kronos or Cadenza, when considering the possibility of using a 

mutated homoeologue from one species to the other (e.g. Using A or B highly deleterious mutation 

from Cadenza and crossing into Kronos). 5Summary of TILLING lines ordered, in the format X-yZ, 

where X is represented by ‘C’ (Cadenza) or ‘K’ (Kronos), -y is represented by ‘-stop’ (premature stop 

codon), ‘-splice’ (splice site mutation) or ‘–mis’ (missense mutation), and Z is represented by ‘A’, ‘B’ 

or ‘D’ (A, B or D sub-genome). TILLING lines listed in italic represent those most recently ordered 

(and for which bulked seed is not yet available). †No seed available from JIC SeedStor. 

 

4.6 Genomic prediction 

Delivery of Milestones: M5.1, M5.2, M5.3, M5.4. 

Aim: Use MAGIC genotypic and phenotypic datasets to develop and validate Genomic Prediction 

(GP) methodologies targeting key traits.  

 
Process: GP methods are commonly tested in collections of cultivars or advanced breeding lines 

from selection programmes. These often have strong population subdivision and variation in kinship 

relationships. The structure of MAGIC is different. Though diverse, its balanced crossing scheme 

ensures that each founder contributes uniformly to each line. Testing methods of prediction within 

MAGIC therefore compares prediction methods in the absence of strong kinship relationships. In 

addition, multi-parent crosses may prove to be a better origin for genomic selection schemes, so 

testing prediction methods in MAGIC has direct practical use. Prior to the start of this work package, 

we investigated various GP methods. We found ridge regression to perform best, but found Markov 

blanket approaches to suffer from problems with reproducibility. Accordingly, we used ridge 

regression implemented in the rrBLUP package v 4.6 (Endelman, 2011) to undertake GP using the 

phenotypic data for the traits grain yield (YLD), plant height (PHT), spikelet number (SKT) and 

specific weight (SPW), combined with the genotypic data generated using a 90k SNP array (Mackay 

et al. 2014; Gardner et al. 2016; NIAB unpublished). Results are summarised in Appendix 8.  

 

As expected given the heritabilities and underlying genetic determinants identified in Sections 4.1 

and 4.2, the best genomic prediction accuracies were achieved for PHT (0.69 to 0.79), followed by 

SKT (0.57 to 0.76), SPW (0.40 to 0.58) and YLD (0.12 to 0.48). For PHT the lowest prediction 
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accuracy was found for height data from the 2016 trial held at the RAGT site (RGT-YLD-16), though 

surprisingly this was not the least correlated site for the true phenotypic datasets (BAY-YLD-16). For 

SKT the lowest prediction accuracy was found for the ELS-YLD-16 data, in fitting with this site’s low 

correlation against the true phenotypic training data. For SPW this same trend was observed for the 

ELS-YLD-16 data, being both the weakest correlation to the training set and also the poorest 

prediction accuracy. For YLD, we find that the KWS-YLD-16 trial gave consistently the most accurate 

predictions, regardless of training set used. Yet the KWS-YLD-15 trial had the weakest prediction 

based on a training set of pre-project yield data from NIAB (2012-2014). This suggests a strong 

environmental factor is influential on final yield values, therefore requiring a larger training data set 

to improve genomic prediction accuracy for yield relative to other traits. Overall we see that all 

genomic predictions are linearly related to true phenotypic data correlations, as would be anticipated. 

For grain yield, the best genomic predictions were achieved when combining phenotypic data from 

all four years of trial.  

 

Deliverables: Establishment of GP workflows for the MAGIC population, and establishing prediction 

accuracies for key traits. 
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5. Discussion 

5.1 Overview 
A total of 376 QTL were identified for 18 traits. For a subset of 20 QTL, 58 co-dominant KASP 

markers were developed. These provide molecular tools to the participating breeding companies to 

explore the tracking of beneficial alleles segregating within ongoing breeding programmes. In 

addition to these markers, 31 NILs and TILLING mutants targeting 36 homoeologues from 17 

candidate genes were developed. Together, these provide tools and resources to underpin future 

map-based gene cloning of QTL form UK-relevant germplasm. The resources for this subset of 

MAGIC QTL represents the first tranche of a pipeline established in this project that can provide 

continued staggered delivery of resources to underpin cloning of yield and yield component QTL of 

direct relevance to UK germplasm.   

 

5.2 Genetic control of agronomic traits 

Known major effect genes were identified as playing a role in controlling several of the traits 

investigated. As expected, the RHT-B1 and RHT-D1 semi-dwarfing loci that segregate in the 

population were found to have large effect on the control of plant height (explaining up to 11% and 

28% of the phenotypic variation, respectively). In addition to plant height, both loci were found to 

have pleiotropic effects on ≥11 additional traits, illustrating the impact of semi-dwarfing alleles on 

crop performance. The photoperiod response gene PPD-D1, for which early flowering alleles 

originate from the MAGIC founder Soissons, had an expected major effect on flowering time (up to 

31% phenotypic variation explained), as well as on plant height (≤5%), spikelet number (≤19%), and 

three grain traits (seed area, seed circumference and seed number per ear). Additionally, the major 

spikelet number QTL identified in the MAGIC population on chromosome 7A (-log10P = 66.4) has 

previously been reported by numerous groups over the last ~15 years (e.g. Quarrie et al. 2005; 

2006). Our recent analysis of selection over the wheat pedigree indicates that this locus has likely 

been under strong breeder selection over the last ~15 years (Fradgley et al. 2019), indicating breeder 

selection for this genetic locus of major effect. Of the predicted gene models found to lie within the 

7A QTL, three candidate genes were identified. Interestingly, we also identified a homoeologous 

spikelet number QTL on chromosome 7B. Cross-referencing the gene content common to both the 

7A and the 7B QTLs narrowed down the interval to a region containing just one of the three candidate 

genes. Analysis of the DNA sequences of this gene, using publicly available genomic sequence for 

Chinese Spring and the MAGIC founders Claire and Robigus, did not identify mutations predicted to 

lead to premature stop codons or miss-splicing of the CDS, although non-synonymous mutations 

were identified (Appendix 9). Further investigation, such as RNA expression analysis, population-

based resequencing, and reverse genetics approaches such as the use of sequenced wheat 

TILLING populations (Krasileva et al. 2017), gene editing and/or gene silencing, can confirm the 

remaining candidate as the underlying gene.  
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In addition to these major effect genes, other MAGIC QTLs were identified which have previously 

been reported. For example, the homoeologous flowering time QTL we identified close to the long 

arm telomere on chromosomes 1B and 1D have been previously genetically mapped (Zikhali et al. 

2014; 2015). Similarly, the MAGIC flowering time QTL located towards the short arm telomere of 

chromosome 7B corresponds to allelic variation at the VERNALIZATION3 (VRN3) locus, previously 

shown to control flowering time in wheat (Yan et al. 2006; Bentley et al. 2014; Dixon et al. 2018). 

Additionally, we found the chromosomal region containing VRN3, 7B-1 (Table 6), to contain a QTL 

for spikelet number, indicating possible pleiotropic effect of allelic variation at VRN3 on yield 

component traits - as is common for genetic loci controlling flowering time. Recent reports 

investigating grain size via artificial mutation of the wheat orthologue of the rice gene GRAIN 

WIDTH2 (GW2) found GW2 to control seed size and weight, as well as spike traits in wheat. These 

include mutation via gene editing (Wang et al. 2018; Zhang et al. 2018) and TILLING mutants (e.g. 

Simmonds et al. 2016). Additionally, natural variation at TaGW2-6A has been associated with 

modulation of grain weight and number (Zhai et al. 2018). TaGW2-6A is located on chromosome 6 

at 237,759 Mbp (gene model TraesCS6A02G189300) within a region reported to contain extensive 

haplotype blocks due to its location within the low-recombining regions surrounding the centromeric 

region (e.g. reviewed by Brinton & Uauy, 2019). In the MAGIC population, TaGW2-6A is located 

close to the start of the highly non-recombining region spanning the 6A centromere, and lies within 

the MAGIC 6A-6 chromosomal location containing QTL for seed area, seed length, seed width, 

thousand grain weight and tiller number. Nevertheless, the relatively high levels of genetic 

recombination captured in the MAGIC population over three generations of intercrossing and 

subsequent selfing means that recombinations in the chromosomal region harbouring TaGW2-6A 

are present in our population. Further detailed analysis of our datasets is needed to determine 

whether TaTGW2-6A represents a candidate gene for one or more of the grain size QTL at this 

location. Finally, the recently reported thousand grain weight chromosome 5A QTL Qtgw‐cb.5A 

(Brinton et al. 2017) was identified in the MAGIC population within chromosomal region 5A-3 (Table 
6). Using NILs for Qtgw‐cb.5A, Brinton et al (2017) found the chromosomal region containing the 

QTL to affect grain weight via changes in grain length, along with pleiotropic effects on grain width. 

Increased grain length was found to be associated with longer maternal pericarp cell length (Brinton 

et al. 2017), with subsequent analyses of differential gene expression using grain tissue from NILs 

identifying differentially expressed genes, thus helping to refine candidate genes (Brinton et al. 

2018). This QTL also lies within the highly non-recombining region, and so will likely be challenging 

to progress to the identification of the underlying gene.    

 

Some genomic regions contained multiple QTLs. Of these, four were highlighted for possessing six 

or more QTL, were outside of the highly non-recombining regions spanning the centromere, and did 

not represent known genes of known effect such as PPD-D1 and the RHT loci. These represent 
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priority loci for future focus, especially the 3A-1 region on chromosome 3A which includes a yield 

QTL, as well six grain trait QTLs.  

 

5.3 Candidate genes and TILLING 
In Section 4.5, 53 yield and yield component QTLs defining 44 chromosome regions were prioritised 

for analysis of gene content within QTL intervals. These QTL were predominantly located within the 

more highly recombining regions of the wheat genome. In total, 41 candidate genes were identified. 

Considering the wheat grain size QTL alone, these included 7 wheat homologues of rice genes 

previously shown by map-based cloning to underlie grain size QTL in rice, including GW2. The 

candidate genes identified were used to search for TILLING mutants for future validation of gene 

function. The TILLING resources generated can be used in parallel with the NILs initiated within this 

project: where future fine mapping of Mendalised QTL via crossing a NIL pair is undertaken to 

generate recombinations within the region, and where a candidate gene for which we have 

developed TILLING resources remains within the fine-mapped region, investigation of the TILLING 

mutants may provide evidence of the identity of the gene underlying the QTL. Where candidate 

genes are found to fall outside of the fine-mapped region, the TILLING resources may provide novel, 

and phenotypically characterised, functional variation for potential inclusion within breeding 

programmes. Accordingly, the extensive NIL and TILLING resources for yield and yield component 

traits developed here provide valuable resources for future genetic improvement of agronomic traits 

in wheat.  

 

5.4 Suggestions for future research 
Large volumes of genotypic, phenotypic, genetic and biological, and genetic data, resources and 

know-how have been generated, with the potential to further underpin multiple aspects of wheat 

genetic, molecular genetic and genomic-assisted R&D. The forward analysis process as 

demonstrated here for the 7A spikelet number QTL is applicable to the other QTL identified in this 

study. The simultaneous progression of large numbers (>10) of QTL to characterised NIL pairs, and 

ultimately to the underlying genes requires application of an analysis pipeline that integrates the 

reverse genetics approaches listed above alongside additional resources, including:  

 

1. Genome resequencing data for all 8 MAGIC founders: the variety from which the wheat reference 

genome has been developed, Chinese Spring, is not particularly representative of UK wheat 

germplasm, and is thought to have been a selection from a Chinese landrace (Liu et al. 2018). 

Chinese Spring has become the global reference for wheat genome sequence, largely due to its 

early use in the development of genetic stocks, such as the aneuploidy germplasm developed by 

Earnie Sears in the 1930s (Sears, 1939). More recently, the reducing costs of genome sequencing 

combined with advances in genome assembly software and approaches, allows researchers to move 

beyond reliance on a single reference towards a ‘pan-genome’ era.  For example, the 10+ Wheat 
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Genomes Project (http://www.10wheatgenomes.com/) is an international consortium re-sequencing 

15 wheat varieties.  

 

2. Gene expression and gene network resources: The utility of the genome sequence and gene 

model resources in Chinese Spring, and other varieties, is enhanced by additional resources, such 

as transcription atlases for gene expression (e.g. Borrill et al. 2016; Ramirez-Gonzalez et al. 2018). 

These provide information on gene expression in multiple tissues collected at different stages 

throughout development, often under contrasting environmental treatments. These resources can 

be integrated with the genomic sequence datasets for specific QTL regions, allowing genes to be 

prioritised based on their expression profiles. Additionally, genome-scale functional networks are 

now being developed in wheat (e.g. Lee et al. 2017). These incorporate gene expression data, and 

allow functional modules underlying complex traits to be determined. The network-based functional 

hypotheses to be generated can be cross referenced with the gene content of QTL, or with datasets 

generated from NILs generated from these QTL, further aiding the identification of candidate genes 

for functional validation.   

 

Below, three broad future R&D opportunities are listed in more detail. The first two (5.4.1 and 5.4.2) 

aim to identify the genes/genetic polymorphisms underlying QTL detected in this study, precisely 

quantify their effects, and provide perfect markers assaying underlying polymorphisms. They benefit 

from the speed and throughput afforded the resources generated in this project, and in other ongoing 

projects on wheat genomics, and the two approaches would likely be exploited in combination with 

each other. We plan to develop an academic-industrial project proposal targeting these aspects in 

the coming year. The third approach (5.4.3) uses the phenotypic data generated in this project, in 

order to develop approaches and resources for potential use in the further development of 

approaches for hybrid wheat breeding. NIAB, along with the Scotland’s Rural College (SRUC) and 

industrial partners KWS, Limagrain, RAGT and Asur have recently submitted a BBSRC proposal 

addressing this topic.  

 

5.4.1 Leveraging emerging MAGIC genome re-sequencing and RNAseq data to prioritise 
candidate polymorphisms within QTL intervals  
In a separate recently funded BBSRC project, NIAB, in collaboration with Earlham Institute, the John 

Innes Center and the Natural History Museum, is re-sequencing the genomes of the eight MAGIC 

founders (BBSRC projects BB/P010741/1, BB/P010733/1 and BB/P010768/1). This, combined with 

the recently released wheat reference genome for cv. Chinese Spring (IWGSC, 2018) will allow 

future investigation to establish a comprehensive catalogue of genic polymorphisms present in the 

genetic intervals of all QTL identified. Subsequent cross-comparison of this catalogue with gene 

expression atlases generated from public databases, as well as from each of the eight founders, will 

allow rapid prioritisation of candidate genes/ polymorphisms within QTL intervals. A multi-tissue 
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RNASeq catalogue for two of the MAGIC founders, Claire and Robigus, is already underway as part 

of the 10+ Wheat Genomes Project, http://www.10wheatgenomes.com/), and we plan to supplement 

this with similar resources for the remaining six MAGIC founders. The benefit of this approach is that 

it is timely (exploiting resources that are only now becoming available) and simultaneously targets 

all of the QTL identified in within this report. 

 

5.4.2. Detailed understanding of Mendalised QTL 
The identification of NILs for multiple yield and yield component traits provides a potentially rapid 

route to (i) quantifying the phenotypic effect of Mendalised QTL in near isogenic backgrounds (at the 

organ, tissue and cellular level), and (ii) fine-mapping Mendalised QTL to single gene resolution - 

achieved by generation of large numbers of F2 progeny derived from crossing a given NIL pair 

together, and using genetic markers to identify lines carrying genetic recombinations within the QTL 

region. Candidate genes within refined QTL intervals can then be updated, and functionally validated 

via the TILLING resources initiated in this report. The benefit of this approach is that it targets specific 

QTL for which NIL germplasm has been generated in this project. 

 

In practice, approaches 5.4.1 and 5.4.2 are complementary, and would be undertaken 

simultaneously. The ultimate aim would be to identify the genes and genetic polymorphisms 

underlying genetic variation currently in use in elite wheat germplasm. The approach here is notable 

in that it simultaneously targets large numbers of QTL for map-based cloning. Such parallelised 

approaches to map-based gene cloning have the potential to rapidly advance our understanding and 

exploitation of genetic variation controlling yield. Such an approach is now possible due to the 

resources and expertise generated in this project, and their alignment with emerging genomics and 

gene expression resources in wheat, as well as with ongoing work in other wheat research groups 

in the UK and beyond. The ultimate goal of such an approach would be the development of ‘perfect’ 

genetic markers that allow precise tracking within breeding programmes of the genetic variant 

associated with conferring beneficial expression of each target trait.  

 

5.4.3. Development of hybrid wheat approaches and resources 
The extensive yield and yield component phenotypic data generated in this project using the MAGIC 

population provide resources with which to develop new hybrid wheat breeding strategies and 

resources. Hybrid crop production has been one of the critical technological developments in modern 

crop breeding, providing rapid gains in yield. While wheat is one of the most important crops globally 

(and the most important in the UK), it is almost exclusively grown as inbred varieties. Switching to 

F1 wheat hybrid production would rapidly improve sustainable wheat production: annual genetic 

improvement in UK wheat yield due to breeding is ~1%; the average yield advantage of wheat 

hybrids over their parents is ~10% (equating to ~10 years of inbreeding-based varietal development). 

This gain translates to about £160 million p.a. at the farm gate in the UK alone. Current hybrid wheat 
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breeding practice follows the successful model of maize. However, the genetic determinants of yield 

in wheat, an inbreeding species, interact in different ways to those in maize and other outbreeding 

cereals. Simply mimicking maize breeding strategies will not be optimal. Furthermore, wheat hybrid 

seed production requires a means to render plants male-sterile at scale. Systems used in other 

crops, such as restoration of cytoplasmic male sterility, are not successful in wheat, largely due to 

the complexity of the hexaploid genome. In Europe, commercial hybrid wheat production is still 

reliant on chemical gametocide application. Because the increased yield of wheat hybrids has not 

historically compensated for the increased cost of hybrid seed production, development/uptake of 

hybrid wheat has not been widely successful to date. The introduction of hybrid wheat varieties 

therefore has two challenges:  

 

(1) Reliable hybrid seed production systems must be established: these are being developed in the 

private sector and are at the point where some wheat hybrid varieties have recently been 

commercialised, most notably in France and Germany.  

 

(2) The need for refinement of wheat-specific hybrid breeding approaches. 

Challenge 1 is now being met via recent availability of efficient chemical gametocides, and improved 

wheat genomic resources have renewed private research into genetic sterility/restoration systems. 

There is now wide industrial interest in determining improved hybrid wheat breeding methods. To 

address this need, NIAB, in collaboration SRUC and industrial partners KWS, Limagrain, RAGT and 

ASUR have recently submitted a proposal titled ‘HyBreed: exploring heterosis, transgressive 

segregation and epigenetic inheritance to underpin and develop efficient wheat hybrid breeding 

approaches’ under the BBSRC Industrial Partnership Award (IPA) scheme. Submitted in January 

2019, decisions on project funding are expected in autumn 2019.  
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7. Workplan 

                                

  
2014 2015 2016 2017 

 

2018 

  
Q-2 Q-1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11  

WP1 MAGIC data management                           
1.1 MAGIC germplasm management M1.1     M1.2                  
1.2 Year 2 trial seed processed     M1.3              
      M1.4          
WP2 Yield trials and phenotyping                           
 Year 1 trials M2.1    M2.2          
 Year 2 trials     M2.3    M2.4      
WP3 QTL mapping                
 QTL mapping        M3.2   M3.3     
 Meta-QTL mapping      M3.1     M3.4    
WP4 Marker conversion, fine mapping                
4.1 Breeder friendly markers for yield         M4.1   M4.2    
4.2 Further investigation of selected QTL      M4.4        M4.5  
WP5 Genomic Prediction and Selection                
 Genomic models          M5.1   M5.2 M5.3 M5.4  
Management                 
 Project meetings  PM  PM  PM  PM  PM  PM PM  

 
Q-1: Undertaken before project start.  
 
Milestones: M1.1 Seed processing for year 1 trials complete. M1.2 Seed processing for year 2 trials complete. M1.3 Databasing of 90k genotype data 
for 1,000 lines. M1.4 Databasing of historic phenotype data. M2.1 Year 1 trials sown. M2.2 Year 1 phenotype data collated. M2.3 Year 2 trials sown. 
M2.4 Year 2 phenotype data collated. M3.1 QTL and meta-QTL analysis of historical phenotype data. M3.2 QTL analysis of year 1 data. M3.3 QTL 
analysis of year 2 data. M3.4 Meta QTL analysis of all phenotype data. M4.1 Conversion of selected 90k SNPs to KASP – round 1. M4.2 Conversion 
of selected 90k SNPs to KASP – round 2. M4.3 Development of additional KASP markers within target QTL intervals. M4.4 Identification of NILs. M4.5 
Genotypic evaluation of NILs and seed bulking. M5.1 Initial GS model developed. M5.2 Bayesian Network and additional approaches tested. M5.3 Final 
models developed. M5.4 Markov blanket derived KASP markers. D5.1 Resources (KASP markers and MAGIC line subsets) for GS-assisted selection 
for yield/yield stability in MAGIC. 
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8. Dissemination and project outputs to date 

 

Dissemination  Date Location 

Field demonstration plots of MAGIC 
germplasm 

10-11 June 2015 Cereals 2015  

Field demonstration plots of MAGIC 
germplasm 

23 June 2015 NIAB Open Day 

Field demonstration plots of MAGIC 
germplasm 

26 June 2015 NIAB Director’s Day 

Invited Talk, WGIN Network Meeting 20 Nov 2015 RRES, UK 
Field demonstration plots of MAGIC 
germplasm 

15-16 June 2016 Cereals 2016 

Field demonstration plots of MAGIC 
germplasm 

June 2016 NIAB Open Day 

Field demonstration plots of MAGIC 
germplasm 

June 2016 NIAB Open Day 

AHDB 6 month undergrad studentship 
(Yeorgia Argirou) 

Sept 2016 – Feb 
2017 

NIAB 

Research presentation 10 April 2017 EMR 
Invited Talk 10 Nov 2017 Gregor Mendel Institute, 

Austria 
Article for CPM magazine May 2017 CPM magazine 
Talk to Italian society, non-specialist audience Oct 2017 Trieste, Italy 
Poster presentation 13-17 Jan 2018 PAG, San Diego, USA 
Post-project:   
BBSRC IPA grant proposal, submitted Jan 2019 Collaborators: NIAB, 

SRUC, EI, Asur, KWS, 
Limagrain, RAGT  
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